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Abstract

In chemistry and computational biology, structural graph descriptors have been proven essential for characterizing the
structure of chemical and biological networks. It has also been demonstrated that they are useful to derive empirical models
for structure-oriented drug design. However, from a more general (complex network-oriented) point of view, investigating
mathematical properties of structural descriptors, such as their uniqueness and structural interpretation, is also important
for an in-depth understanding of the underlying methods. In this paper, we emphasize the evaluation of the uniqueness of
distance, degree and eigenvalue-based measures. Among these are measures that have been recently investigated
extensively. We report numerical results using chemical and exhaustively generated graphs and also investigate correlations
between the measures.
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Introduction

Structural analysis of graphs has been an outstanding problem

in graph theory for several decades [1–4]. A challenging problem

in this theory is to investigate structural features of the graphs and

their characterization. Another important task is to quantify the

structural features of graphs, as well as their complexity [2,3,5,6].

The former relates to developing measures such as the clustering

coefficient or the average distance of a graph [7]. The latter relates

to deriving complexity indices for graphs, which are often called

structural descriptors/measures or topological indices [8–11].

In this paper, we deal with evaluating the uniqueness,

discrimination power or degeneracy of special graph measures

for investigating graphs holistically (in contrast to local graph

measures) [12]. A descriptor is called degenerate if it possesses the

same value for more than one graph. In view of the large body of

literature on structural graph measures [2,3,5,13], the degeneracy

problem has been somewhat overlooked in graph theory. In fact,

the uniqueness of structural descriptors has been investigated in

mathematical chemistry and related disciplines for discriminating

the structure of isomeric structures and other chemical networks

[14–16]. A detailed survey on the uniqueness of topological indices

by using isomers and hexagonal graphs has been given by

Konstantinova [16]. For more related work, see also [17].

To date, no complete graph invariant, i.e., a measure that is

fully unique on general graphs, has been found. Indeed, some

measures turned out to be complete by using special sets of graphs

[15,17,18]. In a more general context, i.e., by using graphs without

structural constraints, any topological graph measure has a certain

kind of degeneracy, which also depends on the mathematical

method to define the measure, see [19,20]. A highly discriminating

graph measure is desirable for analyzing graphs; hence, measuring

the degree of its degeneracy is important for understanding its

properties, limits and quality.

The main contribution of this paper is to investigate to what

extent known degree, distance and eigenvalue-based measures are

degenerate. Among the measures we examine (see Table 1) are the

recently developed geometric-arithmetic indices [21,22], the atom-

bond connectivity index [23] and the Estrada index [24], which is

based on the eigenvalues of a special graph-theoretical matrix

[25], here the adjacency and Laplacian matrix. It turns out that

some of the measures based on distances and eigenvalues are

highly unique in exhaustively generated graphs (e.g., see Table 2).

Using these graphs is a greater challenge than only using isomeric

structures, as exhaustively generated graphs do not possess any

structural constraints. However, it is clear that other distance or

eigenvalue-based measures exist that possess only low discrimina-

tion power [26], implying that the uniqueness of a measure

crucially depends on its mathematical composition and the graph

class under consideration.

Methods and Results

Uniqueness of Topological Descriptors
In this section, we present numerical results when evaluating the

uniqueness of certain topological descriptors. Note that a summary

of the topological indices used in this paper can be found in

Table 1. As mentioned, the discrimination power of these

measures has not yet been evaluated extensively on a large scale.

Therefore, the results might be useful for gaining deeper insights
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into these measures and for enabling implications when designing

novel topological descriptors. As usual, we use the measure

SI~(DGD{ndv)=DGD, ð1Þ

which was called the sensitivity by Konstantinova [15], for

evaluating the uniqueness of an index I . Clearly, SI depends on a

graph class G; ndv are the values that cannot be distinguished by I ,

and DGD is the size of the graph set. Now, we start interpreting the

results by considering Table 2 and observe that we have arranged

the used descriptors into four groups. We also emphasize that the

values in Table 2 have been calculated by using the graph classes

Ni, i~8,9,10. These are the classes of exhaustively generated non-

isomorphic, unweighted and connected graphs with i vertices

each. The cardinalities DNi D are also depicted in Table 2.

For the degree-based indices, it is not surprising that these measures

have only little discrimination power, as many graphs can be realized

by identical degree sequences. This effect is even stronger if the

cardinality of the underlying graph set increases, see Table 2. The

highest discrimination power among the indices of this class has the

ABC index. This is in accordance with the well-known fact that the

degeneracy of topological descriptors decreases in the following order:

firstgeneration(e:g:,NK)§secondgeneration(e:g:,ABC)§third-

generation, see [27]. Recall that first-generation indices are integer

measures derived from integer local vertex invariants such as vertex

degrees or distances sums [28]. Second-generation indices are real

numbers derived from integer local vertex invariants [28]. Third-

generation indices are real numbers derived from real local vertex

invariants [28].

Most of the information-theoretic measures (e.g., IC , OdC) we

have evaluated in this study are based on grouping elements (e.g.,

vertices, degrees, etc.) in equivalence classes [6,8] to determine

probability values. We observe that the uniqueness of these

measures is also low. In contrast, the degree-degree association

index Il
f Dexp

[29] is highly discriminating for all three graph classes

[30]. Surely, a reason for this is the fact that this measure is non-

partition-based, as probability values have been assigned to each

vertex in the graph by using the special information functional f D,

see [29]. Note that N10 contains almost 12 million graphs.

Calculating the discrimination power of the distance-based

measures, such as the second or third geometric-arithmetic indices

[22,31], leads to a somewhat surprising result: the uniqueness for

N8,N9 and N10 is very high, but recall that they belong to the class

of so-called second-generation indices [27]. Again, we see that the

composition of the graph invariant (here, distances) to define the

measure is crucial.

If we compare the sensitivity values (using Equation 1) of some

second-generation indices, e.g., the geometric-arithmetic indices

with some of the third-generation indices (information-theoretic

and eigenvalue-based measures), we observe that the uniqueness of

Table 1. The topological indices used for determining the
value distributions and correlation plots.

Index Name Symbol

Atom-bond connectivity index [23] ABC

Augmented Zagreb index [40] AZI

Variable Zagreb index [41] VZI

Modified Zagreb index [42] MZI

Narumi-Katayama index [43] NK

Distance degree centric index [8,44] IC

Offdiagonal complexity [45] OdC

Medium articulation [46] MAR

Degree-degree association index [29] Il
f D
exp

First geometric-arithmetic index [21] GA1

Second geometric–arithmetic index [22] GA2

Third geometric–arithmetic index [31] GA3

Efficiency complexity [26] Ce

Graph energy [47] E

Laplacian energy [48] LE

Estrada index [24] EE

Laplacian Estrada index [49] LEE

Spectral radius [10] lmax

Graph index complexity [26] Cr

Balaban index [19] J

Degree information index [8] Id

Topological information content [6] Ia

Vertex complexity [50] IV

doi:10.1371/journal.pone.0038564.t001

Table 2. Exhaustively generated sets of non-isomorphic and
generated graphs.
DN8D~11117, DN9D~261080 and DN10D~11716571.

N8 N9 N10

Index ndv S ndv S ndv S

Degree-based Measures

ABC 8520 0,233606 241793 0,073874 11539714 0,015095

AZI 8520 0,233606 241777 0,073935 11539377 0,015123

GA1 8522 0,233426 242009 0,073047 11542066 0,014894

VZI 10500 0,055501 258286 0,010702 11704386 0,001040

MZI 10496 0,055860 258293 0,010675 11704428 0,001036

NK 10974 0,012863 260925 0,000594 11716377 0,000017

Information-theoretic Measures

IC 11116 0,000090 261079 0,000004 11716570 0,000000

OdC 10731 0,034722 259967 0,004263 11713337 0,000276

MAR 10879 0,021409 260576 0,001930 11715462 0,000095

Il
f D
exp

385 0,965368 6016 0,976957 609204 0,948005

Distance-based Measures

GA2 1044 0,906090 40014 0,846737 3693236 0,684785

GA3 663 0,940362 15228 0,941673 673972 0,942477

Ce 11076 0,003688 261020 0,000230 11716455 0,000010

Eigenvalue-based Measures

E 1628 0,853558 47577 0,817769 2413055 0,794048

EE 751 0,932446 26457 0,898663 1460054 0,875386

LE 5098 0,541423 59542 0,771940 2338347 0,800424

LEE 1013 0,908878 23393 0,910399 718156 0,938706

lmax 2003 0,819825 48120 0,815689 2137087 0,817601

Non-information-theoretic Measures

C 10950 0,015022 260861 0,000839 11716146 0,000036

Cr 1779 0,839975 44652 0,828972 2098604 0,820886

doi:10.1371/journal.pone.0038564.t002
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e.g., GA2, GA3 is unexpectedly high. In particular, the high

uniqueness of GA3 for graphs [Ni, i~8,9,10, is probably caused

by the fact that its calculation is based on distances between edges.

As the number of edges lies in the interval ½n{1,n(n{1)=2�, the

range of the third geometric-arithmetic index is 0 to n(n{1)=2
[32], and the probability that two graphs have different index

values is certainly larger than in the case when the number of

edges would be fixed. This hypothesis can be supported by

comparing the values of the sensitivity index (using Equation 1) of

the GA3 index shown in Tables 2 and 4. Thus, the sensitivity index

resulting from GA3 shown in Table 2 is greater than 0.94 (§94%),

while, if the number of edges is fixed, see Table 4, the

corresponding sensitivity index is less than 0.02 (ƒ2%). Using

this idea again, it can be understood why the sensitivity index of

GA3 (see Table 2) does not decrease with the number of vertices.

Let us turn to the uniqueness of some eigenvalue-based

measures such as the graph energy E, the Estrada index EEo
and the Laplacian Estrada index LEE. As expected, it is high

because these measures belong to the class of third-generation

indices (e.g., information-theoretic measures). We point out that

the sensitivity index of the graph energy E and Laplacian energy

LE could be affected by rounding errors. The reason for this is

based on the fact that the difference between the values of E and

LE for some graphs is less than 10{8 [33]. However, since the

number of such graphs is very small, see [33], this does not

strongly affect the computation of the uniqueness of E and LE
measured by S and ndv. In particular, the Estrada and Laplacian

Estrada indices possess high uniqueness for all three graph classes

Ni. To give some arguments for this, recall their definitions,

namely

EE~
Xn

i~1

eli , ð2Þ

LEE~
Xn

i~1

emi , ð3Þ

where li and mi are the eigenvalues of the adjacency and

Laplacian matrices, respectively. Knowing that e is irrational and

transcendental, it can be presumed that any power and the sum

thereof is also irrational and transcendental. Hence, the graphs

with the same Estrada (Laplacian Estrada) index are isospectral.

In addition, the uniqueness of these measures is quite stable, and

the same holds for Il
f Dexp

. This means that there is only very little

dependency between their uniqueness and the cardinality of the

underlying graph set. Clearly, this result demonstrates that certain

Table 3. Chemical isomers with DV D~11,12.

DCiso
11 D~160294, DCiso

12 D~738928.

C iso
11 C iso

12

Index ndv S ndv S

Degree-based Measures

GA1 160063 0,001441 738685 0,000329

ABC 160089 0,001279 738714 0,000290

AZI 160093 0,001254 738721 0,000280

VZI 160290 0,000025 738924 0,000005

MZI 160290 0,000025 738924 0,000005

NK 160293 0,000006 738927 0,000001

Information-theoretic Measures

IC 160292 0,000012 738925 0,000004

OdC 160281 0,000081 738916 0,000016

MAR 160291 0,000019 738926 0,000003

Il
f D
exp

1479 0,990773 18852 0,974487

Distance-based Measures

GA2 23548 0,853095 118000 0,840309

GA3 11046 0,931089 60597 0,917993

Ce 160036 0,001610 738454 0,000641

Eigenvalue-based Measures

E 24417 0,847674 110075 0,851034

EE 19590 0,877787 88842 0,879769

LE 22982 0,856626 104151 0,859051

LEE 10062 0,937228 39634 0,946363

lmax 28195 0,824104 117781 0,840606

Non-information-theoretic Measures

C 160293 0,000006 738927 0,000001

Cr 21432 0,866296 91321 0,876414

doi:10.1371/journal.pone.0038564.t003

Table 4. Chemical trees with DV D~20,21,22.
DC20D~366319, DC21D~910726, DC22D~2278658.

C20 C21 C22

Index ndv S ndv S ndv S

Degree-based Measures

GA1 366257 0,000169 910662 0,000070 2278593 0,000029

ABC 366303 0,000044 910710 0,000018 2278640 0,000008

AZI 366303 0,000044 910710 0,000018 2278640 0,000008

VZI 366318 0,000003 910722 0,000004 2278657 0,000000

MZI 366318 0,000003 910722 0,000004 2278657 0,000000

NK 366318 0,000003 910725 0,000001 2278657 0,000000

Information-theoretic Measures

IC 366283 0,000098 910688 0,000042 2278608 0,000022

OdC 366311 0,000022 910718 0,000009 2278652 0,000003

MAR 366317 0,000005 910725 0,000001 2278657 0,000000

Il
f D
exp

196124 0,464609 544432 0,402200 39396 0,982711

Distance-based Measures

GA2 362628 0,010076 904971 0,006319 2266566 0,005307

GA3 362171 0,011323 904971 0,006319 2270582 0,003544

Ce 319073 0,128975 813531 0,106723 2081010 0,086739

Eigenvalue-based Measures

E 93204 0,745566 228831 0,748738 479746 0,789461

EE 87656 0,760711 224579 0,753407 525472 0,769394

LE 544 0,998515 880 0,999034 1275 0,999440

LEE 292 0,999203 509 0,999441 842 0,999630

lmax 130783 0,642981 318330 0,650466 675147 0,703708

Non-information-theoretic Measures

C 366318 0,000003 910725 0,000001 2278657 0,000000

Cr 69592 0,810024 160051 0,824260 316572 0,861071

doi:10.1371/journal.pone.0038564.t004
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measures/functions based on the eigenvalues of graphs possess a

high discrimination power. This contradicts the widely assumed

hypothesis that graph spectra are not feasible to discriminate

graphs properly because of the existence of isospectral graphs, see

[34,35]. Another positive example can be found in [36] where

Dehmer et al. presented spectrum-based measures based on a

probability distribution of structural values with low degeneracy.

In Table 3 and Table 4, we have also evaluated the

discrimination power of the measures using isomers and chemical

trees. In particular, we use the isomeric classes Ciso
11 and Ciso

12

containing all isomers with 11 and 12 vertices, see Table 3. The

numerical results are quite similar to Table 2. However, when

evaluating the indices by using the classes of chemical trees C20,

C21 and C22, we see that the discrimination power of Il
f Dexp

deteriorates significantly. To better understand this, note that the

information functional f D
exp(vi) relies on determining the shortest

paths for all vi [V and, then, degree-degree associations thereof

resulting in f D
exp(vi), see [29]. Finally, when applying this measure

to trees, the reason for the deterioration of its uniqueness could be

understood by the occurrence of a large number of paths

possessing similar length and, hence, resulting in very similar

probability values and entropies. Interestingly, the eigenvalue-

based measures LE and LEE possess high uniqueness, and whose

values are almost independent of the cardinality of the graph sets.

Thus, these measures turned out to be quite feasible to

discriminate chemical trees uniquely.

Value Distributions
In order to tackle the question of what kind of degeneracy the

measures possess, we plot their characteristic value distributions.

Figure 1. Value distribution for GA1.
doi:10.1371/journal.pone.0038564.g001
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Figure 2. Value distribution for ABC.
doi:10.1371/journal.pone.0038564.g002
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Figure 3. Value distribution for IC.
doi:10.1371/journal.pone.0038564.g003
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Figure 4. Value distribution for OdC.
doi:10.1371/journal.pone.0038564.g004
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Figure 5. Value distribution for MA.
doi:10.1371/journal.pone.0038564.g005
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Figure 6. Value distribution for Il
f D
exp

.

doi:10.1371/journal.pone.0038564.g006
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Figure 7. Value distribution for E.
doi:10.1371/journal.pone.0038564.g007
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Figure 8. Value distribution for EE.
doi:10.1371/journal.pone.0038564.g008
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The y-axis is the absolute frequency of the graphs, with a certain

index value depicted on the x-axis. For a graph class, we use the

class of exhaustively generated non-isomorphic, connected and

unweighted graphs denoted by N9. We start with Figures 1 and 2

and observe the vertical strips, indicating that a large number of

graphs have quite similar index values discretely distributed on a

certain interval. In addition, the hull of these value distributions

looks like a Gaussian curve. This means that by using GA1 and

ABC, there exist many degenerate graphs possessing quite similar

index values where the hull of the distributions forms a Gaussian

curve.

As we can see from Figures 3, 4, 5, 6, the value distribution (and

in fact the distribution of degenerate graphs) when considering the

information-theoretic measures is significantly different. We start

with IC, and see that the value distribution is quite scattered, i.e.,

there are no regions in which the graphs are closely clustered. In

contrast, the values of OdC are rather clustered. Similarly, this

also holds for MAR and observe that all three measures (IC, OdC

and MAR) are highly degenerate on N9. But, the degree-degree

association index Il
f Dexp

possesses a high discrimination power (see

Figure 6). In particular, we see that there exist only a very few

degenerate graphs whose index values exploit the entire domain.

The results of plotting the value distributions for the eigenvalue-

based measures graph energy E and Estrada index EE are

depicted in Figures 7 and 8. We see that they possess a high

Figure 9. Left: Correlation network G1
§0:9 inferred from C21. Right: Correlation network G2

§0:9 inferred from N9.
doi:10.1371/journal.pone.0038564.g009

Figure 10. Left: Correlation network G1
ƒ0:2 inferred from C21. Right: Correlation network G2

ƒ0:2 inferred from N9.
doi:10.1371/journal.pone.0038564.g010
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discrimination power and observe the horizontal strips. This

means that a certain number of graphs (e.g., 2, 4, etc.) possess

index values in a certain domain. When considering Figure 7, the

horizontal strip for y~1 indicates the low degeneracy of this

measure. This is similar for the EE shown in Figure 8.

Correlations Between Indices
In order to investigate the correlation ability of the topological

indices, we calculate the linear correlation between them and

depict the results as correlation networks. More precisely, the

linear correlation between the descriptor values of two data vectors

has been computed according to the method of Pearson [37]. In

the depicted plots of the correlation networks, the calculated

Pearson Product-Moments have then been used as edge weights

for labeling the edges connecting the vertices representing the

compared descriptor pairs. The correlation networks are shown in

Figures 9, 10, 11, 12, 13, 14.

We use the graph classes C21 and N9, and choose different

thresholds for the correlation coefficient, resulting in different

networks.

Definition 1. Let fI1, . . . ,Ikg be a set of topological indices

defined on a graph class G and let hƒ1. The vertex and edge set of

the correlation network G§h : ~(V ,E) inferred from G is defined

by

V : ~fI1, . . . ,Ikg and E : ~ fIi,Ijg : Dr(Ii,Ij)D§h
� �

, ð4Þ

where r [ ½{1,1� is the correlation coefficient.

Definition 2. Let fI1, . . . ,Ikg be a set of topological indices

defined on a graph class G and let hƒ1. The vertex and edge set of

the correlation network Gƒh : ~(V ,E) inferred from G is defined

by

V : ~fI1, . . . ,Ikg and E : ~ fIi,Ijg : Dr(Ii,Ij)Dƒh
� �

, ð5Þ

where r [ ½{1,1� is the correlation coefficient.

We start interpreting the results by considering the left-hand

side of Figure 9. The vertices of the graph G1
§0:9 represent indices

that are highly correlated (here, DrD§0:9) by using the graph class

C21. In all correlation graphs, hub vertices, i.e., those with a high

degree, are colored in gray. In particular, the grayer the color of a

vertex is, the higher its degree.

In G1
§0:9, the first geometric-arithmetic index (GA1) and other

measures are highly correlated with other indices that belong to

different groups, e.g., degree-based and eigenvalue-based, etc. In

addition, graph energy (E) and Estrada index (EE) are highly

correlated with other measures such as the Modified Zagreb index

Figure 11. Correlation network Gƒ0:01 inferred from N9.
doi:10.1371/journal.pone.0038564.g011

Figure 12. Correlation network Gƒ0:01 inferred from C21.
doi:10.1371/journal.pone.0038564.g012

Figure 13. Correlation network Gƒ0:05 inferred from N9.
doi:10.1371/journal.pone.0038564.g013
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(degree-based). By using the graph class N9, we obtain the same

type of correlation network denoted by G2
§0:9. Observe that the

connectedness of this network is similarly high in G1
§0:9, however,

there exist new hubs. For instance, the Balaban J and the

augmented Zagreb index (AZI ) index represent such vertices, i.e.,

they are highly correlated with other indices from different

paradigms such as degree-based and eigenvalue-based measures.

Interestingly, the uniqueness (measured by ndv and S) of, e.g.,

AZI and lmax by using N9 is higher than by taking C21 into

account. Nevertheless, these indices (and others) possess larger

neighborhoods compared to C21. This means that they contain

more highly correlated vertices adjacent to AZI and lmax than by

using C21. One would have expected this in a reverse order as the

isomers (C21) are structurally more similar among each other than

the graphs contained in N9. It is likely that the reasons for this are

different structural characteristics captured by the underlying

graphs of N9 and C21.

For studying indices that are only slightly correlated, firstly

consider G1
ƒ0:2 in Figure 10. We see that the degree-degree

association index (Il
f D
exp

) is a hub vertex, i.e., there is only a small

correlation. That means Il
f Dexp

(by using C21) captures structural

information significantly different compared to almost all other

measures (representing vertices) in this network. If we consider N9

as a graph set, we observe that G2
ƒ0:2 has more hubs than G1

ƒ0:2.

For instance, ID and Ia represent hubs and therefore possess only a

small correlation with other measures from different paradigms.

This also implies that the structural characteristics of the graphs

[N9 are different to those [C21. Also, the hubs in G2
ƒ0:2 could

serve as potential candidates to be tested for solving QSAR/QSPR

problems [38] as they capture structural characteristics differently

(compared to classical indices) and some (e.g., efficiency complex-

ity and offdiagonal complexity) have not yet been used in

mathematical chemistry and drug design. In addition, it would

be interesting to examine their ability for classifying graphs

optimally by using supervised learning techniques, e.g., see [39].

To finalize this section, we consider Figures 11, 12, 13, 14. We

have also plotted the evolution of the correlation networks for

h~0:01,0:05, and have obtained the networks Gƒ0:01 and Gƒ0:05

for both N9 and C21, respectively. From Figure 11, we see that by

using N9, the measures Ce and E are highly uncorrelated

(h~0:01). In addition, the degree-degree association index Il
f D
exp

and GA1 are highly uncorrelated by using C21 (h~0:01). If we

now choose h~0:05 for N9 and C21, the resulting networks (see

Figures 13 and 14) also show highly uncorrelated indices. Starting

with N9 (see Figure 13), far more indices are highly uncorrelated

(h~0:05) compared with Figure 11. These indices belong to

different paradigms (degree-based, information-theoretic, etc.). But

when considering the graph class C21 (see Figure 14), only the

degree-degree association index Il
f Dexp

is highly uncorrelated

(h~0:05) with many other indices. It is clear that the differences

between these correlation networks are clearly induced by the

structural differences (factors such as cyclicity and connectedness,

which contribute to the complexity of the graphs) of the graph

classes. Note that we obtained a similar result by comparing N9

and N10 (instead of N9 and C21). Figure 14 expresses that by using

trees, Il
f D
exp

captures structural information significantly different

than many other non-information-theoretic indices such as E, EE,

etc. We hypothesize that this result also holds for other tree classes

as well. As mentioned above, the index Il
f Dexp

could be used to

characterize graphs for problems in structural chemistry or

QSAR, with the aim that it solves a particular problem (e.g.,

QSAR/QSPR) better than existing indices which have already

been used.

Summary and Conclusion
In this paper, we have explored to what extent degree and

eigenvalue-based measures are degenerate. To tackle this problem,

we used exhaustively generated undirected, connected and non-

isomorphic graphs and chemical graphs. Interestingly, we found

that some recently developed distance-based measures, e.g., GA2,3,

have a much better uniqueness than measures that are known to

be highly unique for chemical graphs, e.g., the Balaban J index.

Note that the results for the Balaban J index by using the classes

Ni, i~8,9,10, have been reported in an earlier paper [30].

Equally, some of the eigenvalue-based measures such as E,LE and

LEE possess high discrimination power for all graph classes that

we examined in this paper. This shows that such measures for

discriminating graphs structurally can be feasible, despite the

existence of isospectral graphs. A strong point of all measures

(except the topological information content for large graphs, as it

relies on determining their automorphism groups) used in this

study is their polynomial time complexity. Hence, they could also

be applied to large complex networks. First studies of examining

the uniqueness of structural measures by using gene networks

inferred from high-throughput data are under development. We

will also examine the relationship between the uniqueness of a

measure and the ability to classify graphs meaningfully.
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17. Diudea MV, Ilić A, Varmuza K, Dehmer M (2011) Network analysis using a
novel highly discriminating topological index. Complexity 16: 32–39.

18. Xu CYHL (1996) On highly discriminating molecular topological index. J Chem
Inf Comput Sci 36: 82–90.

19. Balaban AT (1982) Highly discriminating distance-based topological index.
Chem Phys Lett 89: 399–404.

20. Balaban AT (1987) Numerical modelling of chemical structures: Local graph

invariants and topological indices. In: King RB, Rouvray DH, editors, Graph
Theory and Topology, Elsevier. 159–176. Amsterdam, The Netherlands.
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25. Janežić D, Miležević A, Nikolić S, Trinajstić N (2007) Graph-Theoretical
Matrices in Chemistry. Mathematical Chemistry Monographs. University of

Kragujevac and Faculty of Science Kragujevac.
26. Kim J, Wilhelm T (2008) What is a complex graph? Physica A 387: 2637–2652.

27. Balaban AT (2005) Can topological indices transmit information on properties

but not on structures? J Comput Auid Mol Des 19: 651–660.

28. Balaban AT, Mills D, Kodali V, Basak SC (2006) Complexity of chemical

graphs in terms of size, branching and cyclicity. SAR QSAR Environ Res 17:

429–450.

29. Dehmer M, Emmert-Streib F, Tsoy Y, Varmuza K (2011) Quantifying

structural complexity of graphs: Information measures in mathematical

chemistry. In: Putz M, editor, Quantum Frontiers of Atoms and Molecules,

Nova Publishing. 479–498.

30. Dehmer M, Grabner M, Varmuza K (2012) Information indices with high

discrimination power for arbitrary graphs. PLoS ONE 7: e31214.

31. Zhou B, Gutman I, Furtula B, Du Z (2009) On two types of geometric-

arithmetic index. Chem Phys Lett 482: 153–155.

32. Das KC, Gutman I, Furtula B (2011) Survey on geometric–arithmetic indices of

graphs. MATCH Commun Math Comput Chem 65: 595–644.
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