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ABSTRACT  
Breast carcinoma is one of the leading causes of deaths among 

women worldwide. Th e immune response in breast cancer is me-

diated by innate and adaptive immune cells, including natural 

killer (NK) cells, dendritic cells (DCs) and T lymphocytes. Th e 

4T1 mammary carcinoma line derived from BALB/c mice shares 

many characteristics with naturally occurring human breast 

cancer. We aimed to investigate the mechanisms of anti-tumour 

immunity using the experimental 4T1 breast cancer model in 

syngeneic BALB/c mice. After 12 days of tumour inoculation, 

mammary carcinoma-bearing mice had signifi cantly decreased 

numbers of NKp46+ NK cells compared with healthy mice and 

lower cytotoxic activity of total splenocytes and NK cells in vitro. 

Additionally, signifi cantly higher numbers of CD11c+ DCs were 

detected in the spleens of tumour-bearing mice, but the number 

of activated CD80+CD86+ dendritic cells  was entwithsimilar to 

that in healthy mice, indicating an increased number of imma-

ture DCs in tumour-bearing mice. Th e data indicate that 4T1 

mammary carcinoma progression in BALB/c mice is associated 

with suppressed innate anti-tumour immunity.  

Keywords: 4T1 mammary carcinoma, BALB/c mice, 

NK cells, dendritic cells.

APSTRAKT  

Rak dojke je jedan od najčešćih uzroka smrti žena, širom 

sveta. Imunski odgovor na tumor dojke posredovan je ćelija-

ma urođene i stečene imunosti, uključujući ćelije ubice (NK), 

dendritske ćelije (DCs) i T limfocite. 4T1 mišji karcinom 

dojke, dobijen iz BALB/C miša, deli mnoge karakteristike sa 

spontano nastalim humanim karcinomom dojke. Cilj istra-

živanja je bio ispitati mehanizme anti-tumorske imunosti 

koristeći 4T1 eksperimentalni model tumora dojke singen sa 

BALB/c miševima. Dvanaest dana nakon inokulacije tumo-

ra, miševi sa tumorom imali su značajno manji broj NKp46+ 

NK ćelija, u poređenju sa zdravim miševima kao i manju 

citotoksičnost ukupnih splenocita i NK ćelija, in vitro. Ta-

kođe, detektovan je značajno veći broj CD11c+ dendritskih 

ćelija u slezini miševa sa tumorom, dok se broj aktiviranih 

CD80+CD86+ dendritskih ćelija nije značajno razlikovao u 

poređenju sa zdravim miševima, ukazujući na povećan broj 

nezrelih dendritskih ćelija u miševa sa tumorom. Rezultati 

ukazuju da je progresija 4T1 karcinoma dojke povezana sa 

suprimiranim urođenim anti-tumorskim odgovorom.

Ključne reči: 4T1 karcinom dojke, BALB/c miševi, NK 

ćelije, dendritske ćelije. 

INTRODUCTION

Breast cancer is characterised by the development of 

metastasis in distant organs, such as the lungs, bones, liv-

er and brain, and it is one of the leading causes of cancer 

deaths among women (1, 2). The role of innate immunity 

in breast cancer growth and progression remains unknown, 

but the role of the specific immune response has been ex-

tensively studied (3-4). The role of NK cells in immune 

surveillance as a first line of antitumor defence is well es-

tablished (5-8). NK cell activity is variable during tumour 

progression and is related to clinical stage and disease out-

come (4, 8-11). T cells are important effector cells against 

tumours, according to many studies on tumour models 

in mice (12-16). Cytotoxic CD8+ T cells kill tumour cells, 

while the anti-tumour immune response of CD4+ T cells 

can be polarised towards Th1, Th2 or Th17 type. The 

type-1 immune response is characterised by the secretion 

of interferon-gamma (IFN-γ), which contributes to tumour 

rejection by stimulating the cytotoxic activity of CD8+ T 

and NK cells (17-20). In contrast, in the type-2 anti-tumour 

immune response, interleukin-4 (IL-4), interleukin-5 (IL-5) 

and interleukin-10 (IL-10) suppress cellular immunity and 

therefore facilitate tumour growth and metastases (21-22). 

The role of the type-17 anti-tumour immune response has 

not been clarified. Interleukin-17 (IL-17), a hallmark Th17 
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cell cytokine, is a potent mediator of inflammation in auto-

immune diseases (23-24), but it has dual roles in antitumor 

immunity: not only can it promote tumour growth and me-

tastasis by stimulating neoangiogenesis (25-27), IL-17 can 

also induce the cellular immunity responsible for tumour 

rejection (28-30). Dendritic cells (DCs) are part of the in-

nate immune system involved in the activation and prolif-

eration of tumour-specific T cells (31-33) and in enhancing 

the tumoricidal activity of NK cells (34-35). Immature DCs 

induce immunosuppressive CD4+ T cells (36-39), and tu-

mour cells produce factors that could prevent DC matura-

tion (40-41). Immature DCs are characterised by the weak 

expression of MHC II and co-stimulatory molecules with 

low IL-12 production and therefore have limited capacities 

to stimulate T cells (36-39). B cells contribute to antitumor 

immunity by secreting tumour-specific antibodies that fa-

cilitate the killing of tumour cells (42), but they can also in-

duce a pro-angiogenic and pro-tumorigenic microenviron-

ment that supports tumour growth (42). 

In this study, using the 4T1 metastatic breast cancer 

model in BALB/c mice, we aimed to investigate anti-tu-

mour innate immune mechanisms during the progression 

of primary tumours. 

MATERIALS AND METHODS

Mice

In all of the experiments, we used female BALB/c mice 

that were 10-11 weeks old. The experiments were approved 

by the Animal Ethics Board of the Faculty of Medicine, 

University of Kragujevac, Serbia.

4T1 tumour cells

The mouse breast cancer cell line 4T1, which is synge-

neic to the BALB/c background, was purchased from the 

American Type Culture Collection (ATCC, USA). 4T1 cells 

were maintained in Dulbecco’s modified Eagle’s medium 

supplemented with 10% foetal bovine serum, 2 mmol/l L-

glutamine, 1 mmol/l penicillin-streptomycin, and 1 mmol/l 

mixed nonessential amino acids (Sigma, USA) (complete 

growth medium) and cultured under standard conditions 

as previously described (43). The number of viable tumour 

cells was determined by trypan blue exclusion, and only 

cell suspensions with ≥95% viable cells were used. Mice 

were orthotopically injected with 5×104 4T1 cells in the 

fourth mammary fat pad, as previously described (44). 

Cellular analysis of the spleen 

Mice were sacrificed on day 12 after tumour inocula-

tion, and their spleens were removed. Single-cell suspen-

sions were obtained from the spleens by mechanical dis-

persion through a cell strainer (BD Pharmingen, USA) in 

complete growth medium. Additionally, erythrocytes were 

removed from the splenocyte cell suspension by lysing so-

lution (BD Pharmingen). After three washes, cells were re-

suspended in complete growth medium.

Cell stimulation

For analysis of CD107a expression, splenocytes were ac-

tivated with phorbol 12-myristate 13-acetate (PMA, Sigma) 

(50 ng/ml) and ionomycin (500 ng/ml, Sigma) with GolgiS-

top (BD Pharmingen) as previously described (43, 45). 

Flow cytometry

Single-cell suspensions from spleens were incubated with 

mAbs specific for mouse CD3, CD4, CD8, CD19, NKp46, 

CD107a, CD11c, CD80, and CD86 or isotype-matched 

controls (BD Pharmingen/BioLegend) and analysed with a 

FACSCalibur flow cytometer (BD). The gate used for FACS 

analysis was the mononuclear cell region in FSC/SSC plots 

(20000 events were acquired). Data were analysed using 

CELLQUEST (BD) and FlowJo (Tristar) software.

NK cell separation

NK cells were isolated from the spleen by magnetic cell 

sorting using FlowCompTM Mouse CD49b antibody (Invit-

rogen, USA), as previously described (43).

CD8+ T cell separation

CD8+ T cells were isolated from spleens by depleting non-

CD8+ T cells (CD4+ T cells, B cells, monocytes/macrophages, 

NK cells, dendritic cells, erythrocytes and granulocytes) using 

a mixture of monoclonal antibodies against non-CD8+ T cells 

(Invitrogen), as previously described (43). Isolated cells were 

highly enriched mouse CD8+ T cells (purity >90%).

Cytotoxicity assay

The cytotoxic activity of splenocytes, enriched NK cells 

and enriched CD8+ T cells was measured using a 4 h MTT 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide, Sigma) assay at various target-effector (T:E) ra-

tios, as previously described (45). 4T1 tumour cells were 

used as targets. Data were expressed as the mean of tripli-

cate wells ± SEM. Cytotoxic activity was also presented by 

lytic units (LU
20

/107 cells), which were calculated from the 

means of triplicate percentages of killing obtained at four 

different T:E ratios (46).  

Statistical analysis

The data were analysed using the SPSS statistical package, 

version 13. The two-tailed Student’s t test was used. The nor-

mality of distribution was tested by the Kolmogorov-Smirnov 

test. The results were considered significantly different when 

p<0.05 and highly significantly different when p<0.01.

RESULTS

Twelve days after tumour inoculation, the percentage 

and total number of CD19+ B cells were increased while the 

frequency and number of NKp46+ cells were decreased

We assessed the frequencies and the numbers of ma-

jor lymphocyte populations in the spleens of naive and 

tumour-bearing  mice at day 12 following tumour chal-
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lenge. The total number of splenocytes was not signifi-

cantly changed in tumour-bearing mice compared with 

healthy mice (Fig. 1B). The frequency and total number 

of splenic CD19+ B cells were significantly increased after 

tumour inoculation (p<0.05). There was no difference in 

the percentage or total number of CD3+, CD4+ or CD8+ 

cells (Fig. 1A and 1B) between tumour-bearing and naïve 

mice. 4T1 tumour administration markedly reduced the 

percentages and numbers of NKp46+ cells (p<0.05), as 

shown in Figs. 1A and 1B. 

The cytotoxic activity of NK cells but not CD8+ T cells 

was suppressed after tumour inoculation 

On day 12 of tumour progression, the in vitro cyto-

toxic activity of total splenocytes was decreased (Fig. 2). 

We subsequently isolated NK cells (CD49b+) and CD8+ T 

cells from spleens and assessed their antitumor cytotoxic-

ity. The cytotoxic activity of CD8+ T cells was higher after 

tumour inoculation (p<0.05; Fig. 2), while the cytotoxic-

ity of NK cells derived from spleens of tumour-bearing 

mice was significantly lower compared with healthy ani-

mals. In addition, activated CD107a+ NK cells were less 

frequent in tumour-bearing mice, while the percentage of 

CD107a+CD8+ T cells was higher at the same time point 

(both p<0.05; Fig. 2). 

The frequency and total number of CD11c+ dendritic 

cells were increased after tumour induction 

After 12 days of 4T1 tumour inoculation, the percentage 

and number of CD11c+ DCs were higher in spleens from tu-

mour-bearing mice (both p<0.05; Fig. 3). Analyses of the acti-

vation status of these cells revealed no significant difference in 

frequencies or numbers of activated CD80+CD86+ dendritic 

cells between healthy and tumour-bearing mice (Fig. 3).

Figure 1. FACS analysis of splenocytes from tumour-bearing versus tumour-naïve mice  

A-B) Th e total cell number of splenocytes was determined in healthy and tumour-bearing mice on day 12 after tumour inoculation. Percentages and 

total numbers of CD19+, CD3+, CD4+ CD8+ and NKp46+ cells were determined by staining splenocytes with fl uorochrome-labelled mAbs and 

analysing them with a FACSCalibur fl ow cytometer.

C) Representative fl ow cytometry dot plots show percentages of CD19+, CD3+, CD8+ and NKp46+ cells in spleens from healthy and tumour-bearing 

mice. Th e gate used for analysis was the mononuclear cell region in FSC/SSC plots. Data are presented as the mean ± SEM of two separate experiments, 

each carried out with four mice per group. Statistical signifi cance was tested by Student’s t-test.  
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Figure 2. Cytotoxic activity of total splenocytes, CD8+ T cells and NK cells 

Th e cytotoxicity of splenocytes, isolated CD8+ T cells and NK cells was tested with a 4-h MTT assay against 4T1 cell targets at day 12 after tumour 

inoculation. Th e data are presented as the mean percentages of specifi c cytotoxicity and as LU20/107 eff ector cells, which was calculated on the ba-

sis of mean percentages of killing at four diff erent E:T ratios and percentages of eff ector cells found in the spleen. Th e cytotoxic capacity of NK and 

CD8+ T cells was also determined by fl ow cytometric analysis of CD107a expression on NKp46+ and CD8+ cells. Th e gate used for analysis was the 

mononuclear cell region in FSC/SSC plots. Data are means ± SEM of two individual experiments, each carried out with four mice per group. Statistical 

signifi cance was tested by Student’s t-test.

Figure 3. Frequency, number and functional phenotype of CD11c+ 

dendritic cells derived from the spleen

A) Th e percentage and total number of CD11c+ dendritic cells were deter-

mined with a FACSCalibur fl ow cytometer before and at day 12 following 

4T1 tumour challenge. Th e results are presented as the mean ± SEM of 

8 mice per group. B) Th e percentage and total number of CD80+CD86+ 

dendritic cells were also analysed by fl ow cytometry. Th e results are pre-

sented as the mean±SEM of 4 mice per group. Statistical signifi cance was 

determined by Student’s t-test. 
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DISCUSSION

In this study, we report that 12 days after the inocu-

lation of 4T1 mammary carcinoma cells, the percentage 

and number of CD19+ B cells in spleens were significantly 

increased, while the number and cytotoxic activity of NK 

cells were decreased (Fig. 1). Additionally, the frequen-

cy and number of CD11c+ dendritic cells were higher in 

spleens from tumour-bearing mice compared with naïve 

mice, but the frequency of activated dendritic cells in both 

groups was not significantly different (Fig. 3).

The increased frequency and number of CD19+ B cells 

in spleens of tumour-bearing BALB/c mice could be the 

result of Th2 polarisation, which implicates the predomi-

nance of the type-2 antitumor immune response (22). 

However, there is evidence that the type-17 response can 

also induce B cell proliferation and the formation of ger-

minal centres (47). Several studies have shown that B cell 

proliferation in lymph organs correlates with tumour pro-

gression (48-49). Furthermore, we found no difference in 

the percentage or number of splenic T cells and CD4+ and 

CD8+ subpopulations, indicating weak or no activity of 

adaptive cellular immunity, on day 12 after tumour chal-

lenge (Fig 1).

We also detected the decreased cytotoxicity of total 

splenocytes isolated from tumour-bearing mice (Fig. 2). 

To determine which cell population was responsible for 

this phenomenon, we isolated NK and CD8+ T cells and 

tested their antitumor cytotoxic activity in vitro at day 12. 

We found enhanced cytotoxicity of CD8+ T cells (Fig. 2). 

However, the cytotoxic activity of NK cells was signifi-

cantly decreased at the same time point, which contrib-

uted to the lower cytotoxic activity of total splenocytes 

(Fig. 2). During the cytotoxic killing of tumour cells, NK 

cells and CD8+ T cells rapidly release granules containing 

perforin and granzymes into the immunological synapse, 

thereby inducing the death of target cells (50). Lysosomal-

associated membrane protein-1 (LAMP-1), also known as 

CD107a, is a marker of cytotoxic degranulation, as it lines 

the membrane of these granules (51). CD107a can be used 

as an indirect indicator of the cytotoxic capacity of NK and 

CD8+ T cells (52). In line with these findings, we found a 

higher frequency of activated CD8+CD107a+ T cells while 

activated NKp46+CD107a+ NK cells were less frequent in 

spleens from tumour-bearing mice (Fig. 2). Several studies 

have revealed lower cytotoxic activity of NK cells in pa-

tients with breast cancer compared with healthy controls, 

with a negative correlation of NK cell lytic activity with 

lymph node progression of disease (9).

Functional maturation and the activity of NK and T 

cells appear to be dependent on the functional phenotype 

of DCs (53). We showed that tumour inoculation led to an 

increase in the frequencies and numbers of CD11c+ DCs 

in spleens (Fig. 3). During maturation/activation, DCs ex-

press more MHC class II and CD80 and CD86 co-stimu-

latory molecules, all of which have T-cell stimulatory ca-

pacity. However, there was no difference in the percentage 

or total number of fully functional CD80+CD86+ DCs in 

tumour-bearing mice compared with healthy animals (Fig. 

3). Thus, it could be assumed that 12 days after tumour in-

oculation, the functional maturation of dendritic cells was 

absent. The interaction of mature DCs with NK and T cells 

is essential for the tumoricidal activity of these effector 

cells, while immature DCs can induce immunosuppressive 

activity of the same effector cells (34-35).

Taken together, we demonstrate that 12 days after in-

oculation with 4T1 mammary breast carcinoma, NK cell 

cytotoxicity was markedly reduced, and DCs were not ac-

tivated after tumour challenge. These findings suggest a 

suppressed innate anti-tumour immune response in mam-

mary carcinoma-bearing BALB/c mice.
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