Frames for weighted shift-invariant spaces

Stevan Pilipović ${ }^{1}$, Suzana Simić ${ }^{2}$

August 4, 2010

Abstract

In this paper we prove the equivalence of the frame property and the closedness for a weighted shift-invariant space $$
V_{\mu}^{p}(\Phi)=\left\{\sum_{i=1}^{r} \sum_{j \in \mathbb{Z}^{d}} c_{i}(j) \phi_{i}(\cdot-j) \mid\left\{c_{i}(j)\right\}_{j \in \mathbb{Z}^{d}} \in \ell_{\mu}^{p}\right\}, \quad p \in[1, \infty]
$$ which corresponds to $\Phi=\Phi^{r}=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{r}\right)^{T} \in\left(W_{\omega}^{1}\right)^{r}$. We, also, construct a sequence $\Phi^{2 k+1}$ and the sequence of spaces $V_{\mu}^{p}\left(\Phi^{2 k+1}\right), k \in \mathbb{N}$, on \mathbb{R}, with the useful properties in sampling, approximations and stability.

2000 Mathematics Subject Classification: 42C15, 42C40, 42C99, 46B15, 46B35, 46B20

Key Words and Phrases:p-frame; Banach frame; weighted shift-invariant space.

1 Introduction

In this paper, we investigate weighted shift-invariant spaces quoted in the abstract by following the methods from [2] and [25]. Such spaces figure in several areas of applied mathematics, notably in wavelet theory and approximation theory $([2],[8])$. In recent years, they have been extensively studied by many authors (see [1]-[8], [14]-[16], [19, [20, [25], [26]). Sampling with non-bandlimited functions in shift-invariant spaces is a suitable and realistic model for many applications, such as modeling signals with the spectrum that is smoother then in the case of bandlimited functions, or for the numerical implementation (see [6], [9, [10, 12], 13, [17]). These requirements can often be met by choosing appropriate functions in Φ. This means that the functions in Φ have a shape corresponding to a particular impulse response of a device, or that they are compactly supported or that they have a Fourier transform decaying smoothly to zero as $|\xi| \rightarrow \infty$.

Weighted shift-invariant spaces $V_{\mu}^{p}(\Phi), p \in[1, \infty]$, where μ is a weight, were introduced for the non uniform sampling as a direct generalization of the space $V^{p}(\Phi)([1],[26)$. The determination of p and the signal smoothness are used for optimal compression and coding signals and images (see [9]).

The first aim of this paper is to show that the main result of [2] holds in the case of weighted shift-invariant spaces which correspond to L_{μ}^{p} and ℓ_{μ}^{p}, i.e., weighted L^{p} and ℓ^{p} spaces, respectively. Namely, we follow [2] and [25] and prove assertions which need additional arguments depending on the weights. We show that under the appropriate conditions on the frame vectors, there is an equivalence between the concept of p-frames, Banach frames with respect to ℓ_{μ}^{p} and closedness of the space which they generate. A weighted analog of Corollary 3.2 from [25] simplifies a part of the proof of our main result. Although another part of the proof follows, step by step, the proof of the corresponding theorem in [2], we think that it is not simple at all, and that it is worth to be done.

The second aim of this paper is to construct $V_{\mu}^{p}\left(\Phi^{2 k+1}\right)$ spaces with specially chosen functions, $\phi_{0}, \phi_{1}, \ldots, \phi_{2 k}$, that generate a Banach frame for the shiftinvariant space $V_{\mu}^{p}\left(\Phi^{2 k+1}\right)$. Actually, we take functions from a sequence $\left\{\phi_{i}\right\}_{i \in \mathbb{Z}}$ so that the sequence of Fourier transforms $\widehat{\phi}_{i}=\theta(\cdot+i \pi), i \in \mathbb{Z}, \theta \in C_{0}^{\infty}(\mathbb{R})$, makes a partition of unity in the frequency domain $\left(\mathbb{Z}=\mathbb{N}_{0} \cup-\mathbb{N}, \mathbb{N}\right.$ is the set of natural numbers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$). We note that properties of the constructed frame guarantee the feasibility of a stable and continuous reconstruction algorithm in $V_{\mu}^{p}(\Phi)([26])$. Also, we note that $\left\{\phi_{i}(\cdot-k) \mid k \in \mathbb{Z}, i=1, \ldots, r\right\}$ forms a Riesz basis for $V_{\mu}^{p}(\Phi)$ when the spectrum of the Gram matrix $[\widehat{\Phi}, \widehat{\Phi}](\xi)$ is bounded and bounded away from zero (see [8]). The d-dimensional case, $d>1$, is technically more complicated and because of that it is not considered in this paper.

The paper is organized as follows. In Section 2 we quote basic properties of subspaces of weighted L^{p} and ℓ^{p} spaces. The weighted shift-invariant spaces are investigated in Section 3, where we presented our first result quoted in the abstract, Theorem 3.10. In Section 4 we show relations between the dual of the Fréchet space $\bigcap_{s \in \mathbb{N}_{0}} V_{\left(1+|x|^{2}\right)^{s / 2}}^{p}(\Phi)$ and the space of periodic distributions. The case of periodic ultradistributions is obtain by using subexponential growth functions. In Section 5, we use a special sequence of functions $\left\{\phi_{k} \mid k \in \mathbb{N}\right\}$ to construct a sequence of p-frames. Our construction shows that the sampling and reconstruction problem in the shift-invariant spaces is robust. In the final remark of Section 5 we list good properties of these frames.

2 Basic spaces

Denote by $L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ the space of measurable functions integrable over compact subsets of \mathbb{R}^{d}. For a nonnegative function $\omega \in L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ we say that is submultiplicative if $\omega(x+y) \leq \omega(x) \omega(y), x, y \in \mathbb{R}^{d}$ and a function μ on \mathbb{R}^{d} is ω-moderate if $\mu(x+y) \leq C \omega(x) \mu(y), x, y \in \mathbb{R}^{d}$. We assume that ω is continuous and symmetric and both μ and ω call weights, as usual. The standard class of weights on \mathbb{R}^{d} are of the polynomial type $\omega_{s}(x)=(1+|x|)^{s}, s \geq 0$. To quantify faster decay of functions we use the subexponential weights $\omega(x)=\mathrm{e}^{\alpha|x|^{\beta}}$, for some $\alpha>0$ and $0<\beta<1$. Weighted L^{p} spaces with moderate weights
are translation-invariant spaces (see [1]). We, also, consider weighted sequence spaces $\ell_{\mu}^{p}\left(\mathbb{Z}^{d}\right)$ with ω-moderate weight μ. Recall, a sequence c belongs to $\ell_{\mu}^{p}\left(\mathbb{Z}^{d}\right)$ if $c \mu$ belongs to $\ell^{p}\left(\mathbb{Z}^{d}\right)$.

In the sequel ω is a submultipicative weight, continuous and symmetric and μ is ω-moderate. Let $p \in[1, \infty)$. Then (with obvious modification for $p=\infty$)

$$
\begin{gathered}
\mathcal{L}_{\omega}^{p}=\left\{f \mid\|f\|_{\mathcal{L}_{\omega}^{p}}=\left(\int_{[0,1]^{d}}\left(\sum_{j \in \mathbb{Z}^{d}}|f(x+j)| \omega(x+j)\right)^{p} \mathrm{~d} x\right)^{1 / p}<+\infty\right\}, \\
W_{\omega}^{p}:=\left\{f \mid\|f\|_{W_{\omega}^{p}}=\left(\sum_{j \in \mathbb{Z}^{d}} \sup _{x \in[0,1]^{d}}|f(x+j)|^{p} \omega(j)^{p}\right)^{1 / p}<+\infty\right\} .
\end{gathered}
$$

Obviously, we have $W_{\omega}^{p} \subset W_{\omega}^{q} \subset \mathcal{L}_{\omega}^{\infty} \subset \mathcal{L}_{\omega}^{q} \subset \mathcal{L}_{\omega}^{p} \subset L_{\omega}^{p}, W_{\omega}^{p} \subset W_{\mu}^{p} \subset W_{\mu}^{q} \subset$ L_{μ}^{q} and $L_{\omega}^{p} \subset L_{\mu}^{p}$, where $1<p<q \leq+\infty$. For $p=1$ and $\omega=1$ we have $\mathcal{L}^{1}=L^{1}$. We also have $\ell_{\omega}^{1} \subset \ell_{\omega}^{p} \subset \ell_{\omega}^{q} \subset \ell_{\mu}^{q}$, for $1<p<q \leq+\infty$. From [1] we have the following properties.

1) If $f \in L_{\mu}^{p}, g \in L_{\omega}^{1}$ and $p \in[1, \infty]$, then $\|f * g\|_{L_{\mu}^{p}} \leq\|f\|_{L_{\mu}^{p}}\|g\|_{L_{\omega}^{1}}$.
2) If $f \in L_{\mu}^{p}, g \in W_{\omega}^{1}$ and $p \in[1, \infty]$, then $\|f * g\|_{W_{\mu}^{p}} \leq\|f\|_{L_{\mu}^{p}}\|g\|_{W_{\omega}^{1}}$.
3) If $c \in \ell_{\mu}^{p}$ and $d \in \ell_{\omega}^{1}$, then holds the inequality $\|c * d\|_{\ell_{\mu}^{p}} \leq\|c\|_{\ell_{\mu}^{p}}\|d\|_{\ell_{\omega}^{1}}$.

Denote by $\mathcal{W C}_{\mu}^{p}, p \in[1, \infty]$, a space of all 2π-periodic functions with their sequences of Fourier coefficients in ℓ_{μ}^{p}. Let D_{1} and D_{2} be the sequences of Fourier coefficients of 2π-periodic functions K_{1} and K_{2}, respectively. If $D_{1} * D_{2} \in \ell_{\mu}^{p}$, then $D_{1} * D_{2}$ is the sequence of Fourier coefficients of the product $K_{1} K_{2}$. For $K=\left(K_{1}, \ldots, K_{r}\right)^{T} \in\left(W C_{\mu}^{p}\right)^{r},(T$ means transpose $)$ define $\|K\|_{\ell_{\mu, *}^{p}}$ to be the ℓ_{μ}^{p} norm of its sequence of Fourier coefficients.

In the sequel we use the notation $\Phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{T}$. Define $\|\Phi\|_{\mathcal{H}}=$ $\sum_{i=1}^{r}\left\|\phi_{i}\right\|_{\mathcal{H}}$, where $\mathcal{H}=L_{\omega}^{p}, \mathcal{L}_{\omega}^{p}$ or $W_{\omega}^{p}, p \in[1, \infty]$.

We list several lemmas needed to prove our results. Their proofs are analogous to the proof of the corresponding lemmas in [2].

Lemma 2.1. Let $f \in L_{\mu}^{p}$ and $g \in W_{\omega}^{1}, p \in[1, \infty]$. Then the sequence

$$
\left\{\int_{\mathbb{R}^{d}} f(x) g(x-j) \mathrm{d} x\right\}_{j \in \mathbb{Z}^{d}} \in \ell_{\mu}^{p}
$$

and $\left\|\left\{\int_{\mathbb{R}^{d}} f(x) g(x-j) \mathrm{d} x\right\}_{j \in \mathbb{Z}^{d}}\right\|_{\ell_{\mu}^{p}} \leq\|f\|_{L_{\mu}^{p}}\|g\|_{W_{\omega}^{1}}$.
Let $c=\left\{c_{i}\right\}_{i \in \mathbb{N}} \in \ell_{\mu}^{p}$ and $f \in L_{\omega}^{p}, p \in[1, \infty]$. We define, as in [2], their semi-convolution $f *^{\prime} c$ by $\left(f *^{\prime} c\right)(x)=\sum_{j \in \mathbb{Z}^{d}} c_{j} f(x-j), x \in \mathbb{R}^{d}$.

Lemma 2.2. a) If $f \in L_{\omega}^{p}$ and $c \in \ell_{\mu}^{p}, p \in[1, \infty]$, then $f *^{\prime} c \in L_{\mu}^{p}$ and $\left\|f *^{\prime} c\right\|_{L_{\mu}^{p}} \leq\|c\|_{\ell_{\mu}^{p}}\|f\|_{L_{\omega}^{p}}$.
b) If $f \in \mathcal{L}_{\omega}^{p}, p \in[1, \infty]$, and $c \in \ell_{\mu}^{1}$, then $\left\|f *^{\prime} c\right\|_{\mathcal{L}_{\mu}^{p}} \leq\|c\|_{\ell_{\mu}^{1}}\|f\|_{\mathcal{L}_{\omega}^{p}}$.
c) If $f \in W_{\omega}^{p}, p \in[1, \infty]$, and $c \in \ell_{\mu}^{1}$, then $\left\|f *^{\prime} c\right\|_{W_{\mu}^{p}} \leq\|c\|_{\ell_{\mu}^{1}}\|f\|_{W_{\omega}^{p}}$,
d) If $f \in W_{\omega}^{1}$ and $c \in \ell_{\mu}^{p}, p \in[1, \infty]$, then $\left\|f *^{\prime} c\right\|_{W_{\mu}^{p}} \leq\|c\|_{\ell_{\mu}^{p}}\|f\|_{W_{\omega}^{1}}$.

3 Characterization of $V_{\mu}^{p}(\Phi)$

In 11 Feichtinger and Gröchening extended the notation of atomic decomposition to Banach spaces ([10], [12]), while Gröchening [18] introduced a more general concept of decomposition through Banach frames. We recall the definition.

Let X be a Banach space and Θ be an associated Banach space of scalar valued sequences, indexed by $I=\mathbb{N}$ or $I=\mathbb{Z}$. Let $\left\{f_{n}\right\} \subset X^{*}$ and $S: \Theta \rightarrow X$ be given. The pair $\left(\left\{f_{n}\right\}_{n \in I}, S\right)$ is called a Banach frame for E with respect to Θ if
(1) $\left\{f_{n}(x)\right\}_{n \in I} \in \Theta$ for each $x \in X$,
(2) there exist positive constants A and B with $0<A \leq B<+\infty$ such that $A\|x\|_{X} \leq\left\|\left\{f_{n}(x)_{n \in I}\right\}\right\|_{\theta} \leq B\|x\|_{X}, x \in X$,
(3) S is a bounded linear operator such that $S\left(\left\{f_{n}(x)\right\}_{n \in I}\right)=x, x \in X$.

It is said that a collection $\left\{\phi_{i}(\cdot-j) \mid j \in \mathbb{Z}^{d}, 1 \leq i \leq r\right\}$ is a p-frame for $V_{\mu}^{p}(\Phi)$ if there exists a positive constant C (depending on Φ, p and ω)

$$
\begin{equation*}
C^{-1}\|f\|_{L_{\mu}^{p}} \leq \sum_{i=1}^{r}\left\|\left\{\int_{\mathbb{R}^{d}} f(x) \phi_{i}(x-j) \mathrm{d} x\right\}_{j \in \mathbb{Z}^{d}}\right\|_{\ell_{\mu}^{p}} \leq C\|f\|_{L_{\mu}^{p}}, \quad f \in V_{\mu}^{p}(\Phi) . \tag{3.1}
\end{equation*}
$$

A typical application is the problem of finding a shift-invariant space model that describes a given class of signals or images (e.g. the class of chest X-rays). The observation set of r signals or images f_{1}, \ldots, f_{r} may be theoretical samples, or experimental data.

Recall [1], the shift-invariant spaces are defined by

$$
V_{\mu}^{p}(\Phi):=\left\{f \in L_{\mu}^{p} \mid f(\cdot)=\sum_{i=1}^{r} \sum_{j \in \mathbb{Z}^{d}} c_{j}^{i} \phi_{i}(\cdot-j), \quad\left\{c_{j}^{i}\right\}_{j \in \mathbb{Z}^{d}} \in \ell_{\mu}^{p}, 1 \leq i \leq r\right\}
$$

Remark 3.1. If $\Phi \in W_{\omega}^{1}$ and μ is ω-moderate, then $V_{\mu}^{p}(\Phi)$ is a subspace (not necessarily closed) of L_{μ}^{p} and W_{μ}^{p} for any $p \in[1, \infty]$. If $r=1$ and $\{\phi(\cdot-j) \mid j \in$ $\left.\mathbb{Z}^{d}\right\}$ is a p-frame for $V_{\mu}^{p}(\phi)$, then $V_{\mu}^{p}(\phi)$ is a closed subspace of L_{μ}^{p} and W_{μ}^{p} for $p \in[1, \infty]$ (see [23]).

Let $[\widehat{\Phi}, \widehat{\Phi}](\xi)=\left[\sum_{k \in \mathbb{Z}^{d}} \widehat{\phi}_{i}(\xi+2 k \pi) \overline{\widehat{\phi}_{j}(\xi+2 k \pi)}\right]_{1 \leq i \leq r, 1 \leq j \leq r}$ where we assume that $\widehat{\phi_{i}}(\xi) \widehat{\hat{\phi}_{j}(\xi)}$ is integrable for any $1 \leq i, j \leq r$. Let $A=(a(j))_{j \in \mathbb{Z}^{d}}$ be an $r \times \infty$ matrix and $\overline{A A^{T}}=\left[\sum_{j \in \mathbb{Z}^{a}} a_{i}(j) \overline{a_{i^{\prime}}(j)}\right]_{1 \leq i, i^{\prime} \leq r}$. Then $\operatorname{rank} A=\operatorname{rank} A \overline{A^{T}}$.

Also, since $[\widehat{\Phi}, \widehat{\Phi}](\xi)$ is continuous (as a function with r^{2} components) for any $\Phi \in\left(\mathcal{L}_{\omega}^{2}\right)^{r}$, it follows that $\left\{\xi \in \mathbb{R}^{d} \mid \operatorname{rank}\left[\widehat{\Phi}(\xi+2 k \pi)_{k \in \mathbb{Z}^{d}}\right]>k_{0}\right\}$ is an open set for any $k_{0}>0$ and $\Phi \in\left(\mathcal{L}_{\omega}^{2}\right)^{r}$.

Denote by Σ_{α}^{μ} the family of all α-slant matrices $A=\left[a(j, k)_{\left.j \in \mathbb{Z}^{d}, k \in \mathbb{Z}^{d}\right]}\right]$ with

$$
\|A\|_{\Sigma_{\alpha}^{\omega}}=\sum_{k \in \mathbb{Z}^{d}} \sup _{j \in \mathbb{Z}^{d}}|a(k, j)| \chi_{k+[0,1)^{d}}(k-\alpha j)<\infty,
$$

where μ is a weight on \mathbb{R}^{d} and α is a positive number. The slanted matrices appear in wavelet theory, signal processing and sampling theory (see [25]). Note $\Sigma_{\alpha}^{\mu} \subset \Sigma_{\alpha}^{\mu_{0}}$ for any weight μ where $\mu_{0} \equiv 1$ is the trivial weight.

We assume in this subsection that $\Phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{T} \in\left(\mathcal{L}_{\omega}^{p}\right)^{r}$ for $p \in[1, \infty)$.
To prove Theorem 3.10 we need several lemmas. First we recall a result from [2].
Lemma 3.2 (2]). The following statements are equivalent.

1) $\operatorname{rank}\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}^{d}}\right]$ is a constant function on \mathbb{R}^{d}.
2) $\operatorname{rank}[\widehat{\Phi}, \widehat{\Phi}](\xi)$ is a constant function on \mathbb{R}^{d}.
3) There exists a positive constant C independent of ξ such that

$$
C^{-1}[\widehat{\Phi}, \widehat{\Phi}](\xi) \leq[\widehat{\Phi}, \widehat{\Phi}](\xi) \overline{[\widehat{\Phi}, \widehat{\Phi}](\xi)^{T}} \leq C[\widehat{\Phi}, \widehat{\Phi}](\xi), \quad \xi \in[-\pi, \pi]^{d} .
$$

The proofs of the following two lemmas are similar to proofs of the corresponding lemmas from [2]; hence we will not include them here. The second one provides a localization technique in Fourier domain. It allows us to replace locally the generator $\widehat{\Phi}$ of size r by $\widehat{\Psi}_{1, \lambda}$ of size k_{0}.
Lemma 3.3. All the entries of $[\widehat{\Phi}, \widehat{\Phi}](\xi)$ belong to $\mathcal{W} \mathcal{C}_{\omega}^{1}$ and are continuous.
Lemma 3.4. Let the $\operatorname{rank}\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}^{d}}\right]=k_{0} \geq 1$ for all $\xi \in \mathbb{R}^{d}$. Then there exist a finite index set Λ, points $\eta_{\lambda} \in[-\pi, \pi]^{d}, 0 \leq \delta_{\lambda}<1 / 4$, a nonsingular 2π-periodic $r \times r$ matrix $P_{\lambda}(\xi)$ with all entries in the class $\mathcal{W} \mathcal{C}_{\omega}^{1}$ and $K_{\lambda} \subset \mathbb{Z}^{d}$ with cardinality k_{0} for all $\lambda \in \Lambda$, such that:
(i) $\bigcup_{\lambda \in \Lambda} B\left(\eta_{\lambda}, \delta_{\lambda} / 2\right) \supset[-\pi, \pi]^{d}$, where $B\left(x_{0}, \delta\right)$ denotes the open ball in \mathbb{R}^{d} with center x_{0} and radius δ;
(ii) $P_{\lambda}(\xi) \widehat{\Phi}(\xi)=\left[\begin{array}{l}\widehat{\Psi}_{1, \lambda}(\xi) \\ \widehat{\Psi}_{2, \lambda}(\xi)\end{array}\right], \xi \in \mathbb{R}^{d}, \lambda \in \Lambda$, where $\Psi_{1, \lambda}$ and $\Psi_{2, \lambda}$ are functions from \mathbb{R}^{d} to $C^{k_{0}}$ and $C^{r-k_{0}}$, respectively, satisfying

$$
\operatorname{rank}\left[\widehat{\Psi}_{1, \lambda}(\xi+2 k \pi)_{k \in K_{\lambda}}\right]=k_{0}, \quad \xi \in B\left(\eta_{\lambda}, 2 \delta_{\lambda}\right),
$$

$$
\widehat{\Psi}_{2, \lambda}(\xi)=0, \quad \xi \in B\left(\eta_{\lambda}, 8 \delta_{\lambda} / 5\right)+2 \pi \mathbb{Z}^{d}
$$

Furthermore, there exist 2π-periodic C^{∞} functions $h_{\lambda}, \lambda \in \Lambda$, on \mathbb{R}^{d} such that $\sum_{\lambda \in \Lambda} h_{\lambda}(\xi)=1, \xi \in \mathbb{R}^{d}$, and supp $h_{\lambda} \subset B\left(\eta_{\lambda}, \delta_{\lambda} / 2\right)+2 \pi \mathbb{Z}^{d}$.

The next lemma is needed for the proof of Theorem 3.10. Although the formulation is not the same as [2, Lemma 3], the proof is based on the same procedure, and we omit it.

Lemma 3.5. (a) Let $\phi \in \mathcal{L}_{\omega_{s}}^{p}$ if $p \in[1, \infty)$ and $\phi \in W_{\omega_{s}}^{1}$ if $p=+\infty$. Assume that $\sum_{j \in \mathbb{Z}^{d}} \phi(\cdot+j)=0$. Then for any function h on \mathbb{R}^{d} which satisfies

$$
|h(x)| \leq C(1+|x|)^{-s-d-1}, \quad|h(x)-h(y)| \leq C \frac{|x-y|}{(1+\min \{|x|,|y|\})^{s+d+1}}
$$

we have

$$
\lim _{n \rightarrow+\infty} 2^{-n d}\left\|\sum_{j \in \mathbb{Z}^{d}} h\left(2^{-n} j\right) \phi(\cdot-j)\right\|_{\mathcal{L}_{\omega_{s}}^{p}}=0 .
$$

(b) Let $\mu(x)=\mathrm{e}^{\alpha|x|^{\beta}}$. Let $\phi \in \mathcal{L}_{\mu}^{p}$ if $p \in[1, \infty)$ and $\phi \in W_{\mu}^{1}$ if $p=+\infty$. Assume that $\sum_{j \in \mathbb{Z}^{d}} \phi(\cdot+j)=0$. Then for any function h on \mathbb{R}^{d} which satisfies

$$
|h(x)| \leq C \mathrm{e}^{-(\alpha+d+1)|x|^{\beta}}, \quad|h(x)-h(y)| \leq C|x-y| \mathrm{e}^{-(\alpha+d+1)\left(1+\min \left\{|x|^{\beta},|y|^{\beta}\right\}\right)},
$$

we have

$$
\lim _{n \rightarrow+\infty} 2^{-n d}\left\|\sum_{j \in \mathbb{Z}^{d}} h\left(2^{-n} j\right) \phi(\cdot-j)\right\|_{\mathcal{L}_{\mu}^{p}}=0
$$

Next, we give a result on the equivalence of ℓ_{μ}^{p}-stability of the synthesis operator S_{Φ} for a different $p \in[1, \infty]$ (see [25]; here we have $\Lambda=\{1,2, \ldots, r\}$).

Proposition 3.6. [25, Corollary 3.2] Let $\Phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{T} \in\left(W_{\omega}^{1}\right)^{r}, p \in$ $[1, \infty]$ and μ is ω-moderate. Define the synthesis operator $S_{\Phi}:\left(\ell_{\mu}^{p}\left(\mathbb{Z}^{d}\right)\right)^{r} \mapsto$ $V_{\mu}^{p}(\Phi) b y$

$$
S_{\Phi}: c=\left\{c_{j}^{i}\right\}_{j \in \mathbb{Z}^{d}, 1 \leq i \leq r} \mapsto \sum_{i=1}^{r} \sum_{j \in \mathbb{Z}^{d}} c_{j}^{i} \phi_{i}(\cdot-j)
$$

If the synthesis operator S_{Φ} has ℓ_{μ}^{p}-stability for some $p \in[1, \infty]$, i.e., there exists a positive constant C such that

$$
\begin{equation*}
C^{-1}\|c\|_{\left(\ell_{\mu}^{p}\left(\mathbb{Z}^{d}\right)\right)^{r}} \leq\left\|S_{\Phi} c\right\|_{L_{\mu}^{p}} \leq C\|c\|_{\left(\ell_{\mu}^{p}\left(\mathbb{Z}^{d}\right)\right)^{r}} \tag{3.2}
\end{equation*}
$$

for all $c \in\left(\ell_{\mu}^{p}\left(\mathbb{Z}^{d}\right)\right)^{r}$, then the synthesis operator S_{Φ} has ℓ_{μ}^{q}-stability for any $q \in[1, \infty]$.

As a consequence of the previous proposition, we have the next result.

Proposition 3.7. [25, Corollary 3.3] Let $p \in[1, \infty]$ and $\Phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{T} \in$ $\left(W_{\omega}^{1}\right)^{r}$, and $\mu \omega$-moderate. If the synthesis operator S_{Φ} has ℓ_{μ}^{p}-stability, then there exists another family $\Psi=\left(\psi_{1}, \ldots, \psi_{r}\right)^{T} \in\left(W_{\omega}^{1}\right)^{r}$ such that the inverse of the synthesis operator S_{Φ} is given by

$$
\left(S_{\Phi}\right)^{-1}(f)=\left\{\int_{\mathbb{R}^{d}} f(x) \psi_{i}(x-j) \mathrm{d} x\right\}_{1 \leq i \leq r, j \in \mathbb{Z}^{d}}, f \in V_{\mu}^{p}
$$

Proposition 3.6 and 3.7 imply:
Theorem 3.8. Let $\Phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{T} \in\left(W_{\omega}^{1}\right)^{r}$, $p_{0} \in[1, \infty]$, and μ is ω moderate. Then the following three statements are equivalent.
a) The synthesis operator S_{Φ} has $\ell_{\mu}^{p_{0}}$-stability.
b) $V_{\mu}^{p_{0}}(\Phi)$ is closed in $L_{\mu}^{p_{0}}$.
c) There exists $\Psi=\left(\psi_{1}, \ldots, \psi_{r}\right)^{T} \in\left(W_{\omega}^{1}\right)^{r}$, such that

$$
f=\sum_{i=1}^{r} \sum_{j \in \mathbb{Z}^{d}}\left\langle f, \psi_{i}(\cdot-j)\right\rangle \phi_{i}(\cdot-j), \quad f \in V_{\mu}^{p_{0}}(\Phi)
$$

Also we have the next assertion.
d) If the synthesis operator S_{Φ} has $\ell_{\mu}^{p_{0}}$-stability, then the collection $\left\{\phi_{i}(\cdot-j) \mid\right.$ $\left.j \in \mathbb{Z}^{d}, 1 \leq i \leq r\right\}$ is a p_{0}-frame for $V_{\mu}^{p_{0}}(\Phi)$.

Proof. The implication $a) \Rightarrow c$) is a consequence of Proposition 3.6 (see Proposition (3.7).
$c) \Rightarrow a):$ Let $f=\sum_{i=1}^{r} \sum_{j \in \mathbb{Z}^{d}}\left\langle f, \psi_{i}(\cdot-j)\right\rangle \phi_{i}(\cdot-j)$ and

$$
c^{i}=\left\{\left\langle f, \psi_{i}(\cdot-j)\right\rangle\right\}_{j \in \mathbb{Z}^{d}}, \quad 1 \leq i \leq r
$$

Then

$$
\|c\|_{\left(\ell_{\mu}^{p}\right)^{r}}=\sum_{i=1}^{r}\left\|\left\{\int_{\mathbb{R}^{d}} f(x) \psi_{i}(x-j) \mathrm{d} x\right\}_{j \in \mathbb{Z}^{d}} \leq C\right\| f \|_{L_{\mu}^{p_{0}}}
$$

where $C=\sum_{i=1}^{r}\left\|\psi_{i}\right\|_{W_{\omega}^{1}}$. Using Lemma 2.1 and the inequality (2.2), we obtain the right-hand side of (3.2).

The equivalence $a) \Leftrightarrow b$) follows from standard functional analytic arguments (see [2, Theorem 2, Lemma 4]).
d) Lemma 2.1 implies that $\left\{\left\langle f, \phi_{i}(\cdot-j)\right\rangle\right\} \in \ell_{\mu}^{p_{0}}, 1 \leq i \leq r$, and

$$
\sum_{i=1}^{r}\left\|\left\{\int_{\mathbb{R}^{d}} f(x) \phi_{i}(x-j) \mathrm{d} x\right\}_{j \in \mathbb{Z}^{d}} \leq\right\| f\left\|_{L_{\mu}^{p_{0}}} \sum_{i=1}^{r}\right\| \phi_{i} \|_{W_{\omega}^{1}}
$$

Now, ℓ_{μ}^{p}-stability implies

$$
\|f\|_{L_{\mu}^{p_{0}}} \leq C \sum_{i=1}^{r}\left\|\left\{\int_{\mathbb{R}^{d}} f(x) \phi_{i}(x-j) \mathrm{d} x\right\}_{j \in \mathbb{Z}^{d}}\right\|_{\ell_{\mu}^{p_{0}}}
$$

Remark 3.9. Note that ℓ_{μ}^{p}-stability of the synthesis operator implies ℓ_{μ}^{q}-stability, for any $q \in[1, \infty]([25)$, so the statements $b), c$) and d), do not depend on $p \in[1, \infty]$.

Now, we give our main result.
Theorem 3.10. Let $\Phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{T} \in\left(W_{\omega}^{1}\right)^{r}, p_{0} \in[1, \infty]$, and μ is ω moderate. Then the following statements are equivalent.
i) $V_{\mu}^{p_{0}}(\Phi)$ is closed in $L_{\mu}^{p_{0}}$.
ii) $\left\{\phi_{i}(\cdot-j) \mid j \in \mathbb{Z}^{d}, 1 \leq i \leq r\right\}$ is a p_{0}-frame for $V_{\mu}^{p_{0}}(\Phi)$.
iii) There exists a positive constant C such that

$$
C^{-1}[\widehat{\Phi}, \widehat{\Phi}](\xi) \leq[\widehat{\Phi}, \widehat{\Phi}](\xi) \overline{[\widehat{\Phi}, \widehat{\Phi}](\xi)^{T}} \leq C[\widehat{\Phi}, \widehat{\Phi}](\xi), \quad \xi \in[-\pi, \pi]^{d}
$$

iv) There exist positive constants C_{1} and C_{2} (depending on Φ and ω) such that

$$
\begin{equation*}
C_{1}\|f\|_{L_{\mu}^{p_{0}}} \leq \inf _{f=\sum_{i=1}^{r} \phi_{i} *^{\prime} c^{i}} \sum_{i=1}^{r}\left\|\left\{c_{j}^{i}\right\}_{j \in \mathbb{Z}^{d}}\right\|_{\ell_{\mu}^{p_{0}}} \leq C_{2}\|f\|_{L_{\mu}^{p_{0}}}, \quad f \in V_{\mu}^{p_{0}}(\Phi) \tag{3.3}
\end{equation*}
$$

$v)$ There exists $\Psi=\left(\psi_{1}, \ldots, \psi_{r}\right)^{T} \in\left(W_{\omega}^{1}\right)^{r}$, such that

$$
f=\sum_{i=1}^{r} \sum_{j \in \mathbb{Z}^{d}}\left\langle f, \psi_{i}(\cdot-j)\right\rangle \phi_{i}(\cdot-j)=\sum_{i=1}^{r} \sum_{j \in \mathbb{Z}^{d}}\left\langle f, \phi_{i}(\cdot-j)\right\rangle \psi_{i}(\cdot-j), \quad f \in V_{\mu}^{p_{0}}(\Phi) .
$$

Proof. If the synthesis operator has ℓ_{μ}^{p}-stability, then the statement $i v$) is satisfied. Conversely, if the statement $i v$) is satisfied, then the right-hand side of (3.2) (with $p=p_{0}$) immediately follows. Using c) from Theorem 3.8, we obtain the left-hand side of (3.2). Hence, by Theorem 3.8, we have $i) \Leftrightarrow i v$) and $i v) \Rightarrow i i$). The equivalence $i v) \Leftrightarrow v$) follows from Lemma 2.1.

We follow [2] to prove $i i i) \Rightarrow v$) and $i i) \Rightarrow$ iii), and carefully check the use of weights.

$$
i i i) \Rightarrow v) . \quad \text { Let } B_{\lambda}(\xi)=H_{\lambda}(\xi) \overline{P_{\lambda}(\xi)^{T}}\left(\begin{array}{cc}
{\left[\widehat{\Psi}_{1, \lambda}, \widehat{\Psi}_{1, \lambda}\right](\xi)^{-1}} & 0 \\
0 & \mathrm{I}
\end{array}\right) P_{\lambda}(\xi)
$$

for $h_{\lambda}(\xi), P_{\lambda}(\xi)$ and $\widehat{\Psi}_{1, \lambda}$ as in Lemma 3.4. We have $B_{\lambda}(\xi) \in \mathcal{W C}_{\omega}^{p}$, for all
$p \in[1,+\infty]$. Define $\widehat{\Psi}(\xi)=\sum_{\lambda \in \Lambda} h_{\lambda}(\xi) B_{\lambda}(\xi) \widehat{\Phi}(\xi)$. One has $\Psi \in W_{\omega}^{1}$. For any $f \in V_{\mu}^{p}(\Phi)$, define $g(x)=\sum_{i=1}^{r} \sum_{j \in \mathbb{Z}^{d}}\left\langle f, \psi_{i}(x-j)\right\rangle \phi_{i}(x-j), x \in \mathbb{R}^{d}$. Since $f \in V_{\mu}^{p}(\Phi)$, there exists a 2π-periodic distribution $A(\xi) \in \mathcal{W} C_{\mu}^{p}$ such that $\widehat{f}(\xi)=A(\xi)^{T} \widehat{\Phi}(\xi)$. By Lemma 3.4 we have $\widehat{g}(\xi)=\widehat{f}(\xi)$.

Since $\widehat{\Psi}(\xi)=\sum_{\lambda \in \Lambda} h_{\lambda}(\xi) B_{\lambda}(\xi) \widehat{\Phi}(\xi)$, for $f=\sum_{i=1}^{r} \sum_{j \in \mathbb{Z}^{d}}\left\langle f, \phi_{i}(\cdot-j)\right\rangle \psi(\cdot-j)$ the proof is similar.
$i i) \Rightarrow i i i)$. Let $k_{0}=\min _{\xi \in \mathbb{R}^{d}} \operatorname{rank}\left[\widehat{\Phi}(\xi+2 k \pi)_{k \in \mathbb{Z}^{d}}\right]$ and let

$$
\Omega_{k_{0}}=\left\{\xi \in \mathbb{R}^{d} \mid \operatorname{rank}\left[\widehat{\Phi}(\xi+2 k \pi)_{k \in \mathbb{Z}^{d}}\right]>k_{0}\right\} .
$$

Then $\Omega_{k_{0}} \neq \mathbb{R}^{d}$. It is sufficient to prove that $\Omega_{k_{0}}=\emptyset$ (see Lemma 3.2). Suppose that $\Omega_{k_{0}} \neq \emptyset$. Since $\Omega_{k_{0}}$ is open set, then $\partial \Omega_{k_{0}} \neq \emptyset$ and rank $\left[\widehat{\Phi}\left(\xi_{0}+2 k \pi\right)\right]_{k \in \mathbb{Z}^{d}}=$ k_{0}, for any $\xi_{0} \in \partial \Omega_{k_{0}}$, and $\max _{\xi \in B\left(\xi_{0}, \delta\right)} \operatorname{rank}[\widehat{\Phi}(\xi+2 k \pi)]_{k \in \mathbb{Z}^{d}}>k_{0}, \delta>0$. By Lemma 3.4 there exist a nonsingular 2π-periodic $r \times r$ matrix $P_{\xi_{0}}(\xi)$ with all entries in the class $\mathcal{W} \mathcal{C}_{\omega}^{1}, \delta_{0}>0$ and $K_{0} \subset \mathbb{Z}^{d}$ with cardinality k_{0}. Define $\Psi_{\xi_{0}}$, $\widehat{\Psi}_{\xi_{0}}(\xi)$ as in Lemma (3.4] The construction of $\Psi_{\xi_{0}}$ and (2.2) imply $\Psi_{\xi_{0}} \in W_{\omega}^{1}$. Choose n_{0} such that $2^{-n_{0}}<\delta_{0}$ and define $\alpha_{n}(\xi), H_{n, \xi_{0}}(\xi)$ and $\widetilde{H}_{n, \xi_{0}}(\xi)$ as in [2]. For any 2π-periodic distribution $F \in \mathcal{W C}_{\mu}^{p_{0}}$ define, g_{n}, for $n \geq n_{0}+1$, as in [2]. Note that $g_{n} \in V_{\mu}^{p_{0}}(\Phi)$ and $\left[\widehat{g}_{n}, \widehat{\Psi}_{1, \xi_{0}}\right](\xi)=0$. This leads to

$$
\left\|\left[\widehat{g}_{n}, \widehat{\Phi}\right](\xi)\right\|_{\ell_{\mu_{0, *}}^{p_{0}}} \leq C\left\|g_{n}\right\|_{L_{\mu}^{p_{0}}}\left\|\mathcal{F}^{-1}\left(H_{n, \xi_{0}}(\xi) \widehat{\Psi}_{2, \xi_{0}}(\xi)\right)\right\|_{L_{\omega}^{\infty}}
$$

Using Lemma 3.5 we obtain $\lim _{n \rightarrow+\infty}\left\|\mathcal{F}^{-1}\left(H_{n, \xi_{0}}(\xi) \widehat{\Psi}_{2, \xi_{0}}(\xi)\right)\right\|_{\mathcal{L}_{\omega}^{\infty}}=0$. There exists a sequence $\rho_{n}, n \geq n_{0}$, such that $\left\|\left[\widehat{g}_{n}, \widehat{\Phi}\right](\xi)\right\|_{\ell_{\mu_{0}, *}^{p_{0}}} \leq \rho_{n}\left\|g_{n}\right\|_{L_{\mu}^{p_{0}}}$ and $\lim _{n \rightarrow+\infty} \rho_{n}=0$. This, together with the assumption $\left.i i\right)$ and

$$
\left\|\left[\widehat{g}_{n}, \widehat{\Phi}\right](\xi)\right\|_{\ell_{\mu, *}^{p_{0}}}=\left\|\left\{\int_{\mathbb{R}^{d}} g_{n}(\xi) \overline{\Phi(\xi-j)} d x\right\}_{j \in \mathbb{Z}^{d}}\right\|_{\ell_{\mu}^{p_{0}}} \geq C\left\|g_{n}\right\|_{L_{\mu}^{p_{0}}},
$$

leads to $g_{n}=0, n \geq n_{0}+1$. Then

$$
\begin{equation*}
\widetilde{H}_{n, \xi_{0}}(\xi)\left[\widehat{\Psi}_{1, \xi_{0}}, \widehat{\Psi}_{1, \xi_{0}}\right](\xi)\left(\alpha_{n}(\xi)\right)^{-1} \widehat{\Psi}_{1, \xi_{0}}(\xi)=\widetilde{H}_{n, \xi_{0}}(\xi) \widehat{\Psi}_{2, \xi_{0}}(\xi), \tag{3.4}
\end{equation*}
$$

for any 2π-periodic distribution $F \in \mathcal{W} \mathcal{C}_{\mu}^{p_{0}}$ and $n \geq n_{0}+1$. We, also, get

$$
\widetilde{H}_{n, \xi_{0}}(\xi)\left[\widehat{\Psi}_{1, \xi_{0}}, \widehat{\Psi}_{1, \xi_{0}}\right](\xi)\left(\alpha_{n}(\xi)\right)^{-1} \widehat{\Psi}_{1, \xi_{0}}(\xi)=0, \quad \xi \in B\left(\xi_{0}, 2^{-n_{0}-1}\right)+2 \pi \mathbb{Z}^{d} .
$$

So, from (3.4) and the fact that it is valid for all $n \geq n_{0}+1$, we have $\widehat{\Psi}_{2, \xi_{0}}(\xi)=0$, $\xi \in B\left(\xi_{0}, 2^{-n_{0}-3}\right)+2 \pi \mathbb{Z}^{d}$. This contradicts the fact that $\widehat{\Psi}_{2, \xi_{0}}(\xi) \neq 0, \forall \xi \in$ $B\left(\xi_{0}, \delta\right)+2 \pi \mathbb{Z}^{d}, 0<\delta<2 \delta_{0}$.

With this we complete the proof $i i) \Rightarrow i i i)$ and the proof of the theorem.

Remark 3.11. Note that conditions in Theorem 3.8 and Theorem 3.10 do not depend on $p \in[1, \infty]$, so we obtain the next corollary.
Corollary 3.12. Let $\Phi \in\left(W_{\omega}^{1}\right)^{r}$ and $p_{0} \in[1, \infty]$.
i) If $\left\{\phi_{i}(\cdot-j) \mid j \in \mathbb{Z}^{d}, 1 \leq i \leq r\right\}$ is a p_{0}-frame for $V_{\mu}^{p_{0}}(\Phi)$, then $\left\{\phi_{i}(\cdot-j) \mid\right.$ $\left.j \in \mathbb{Z}^{d}, 1 \leq i \leq r\right\}$ is a p-frame for $V_{\mu}^{p}(\Phi)$, for any $p \in[1, \infty]$.
ii) If $V_{\mu}^{p_{0}}(\Phi)$ is closed in $L_{\mu}^{p_{0}}$ and $W_{\mu}^{p_{0}}$, then $V_{\mu}^{p}(\Phi)$ is closed in L_{μ}^{p} and W_{μ}^{p}, for any $p \in[1, \infty]$.
Remark 3.13. $(v) \Rightarrow(i i)$ implies that $\left\{\psi_{i}(\cdot-j) \mid 1 \leq i \leq r, j \in \mathbb{Z}^{d}\right\}$ is a dual p-frame of $\left\{\phi_{i}(\cdot-j) \mid 1 \leq i \leq r, j \in \mathbb{Z}^{d}\right\}$. So, the p-frame for $V_{\mu}^{p}(\Phi)$ is a Banach frame (with respect to $\overline{\ell_{\mu}^{p}}$).

4 Connections with periodic distributions

We will use the notation V_{s}^{p} instead of $V_{\left(1+|x|^{2}\right)^{s / 2}}^{p}\left(\right.$ similarly for $\left.\ell_{s}^{p}\right)$. Since ℓ_{s}^{p} and V_{s}^{p} are isomorphic Banach spaces for all $s \geq 0$ and $p \in[1, \infty]$, we have $V_{s_{1}}^{p}(\Phi) \subset V_{s_{2}}^{p}(\Phi)$ for $0 \leq s_{2} \leq s_{1}, p \in[1, \infty]$. We define Fréchet spaces $X_{F, p}$, $p \in[1, \infty]$, as $X_{F, p}=\bigcap_{s \in \mathbb{N}_{0}} V_{s}^{p}(\Phi)$. Clearly, $X_{F, p}$ is dense in $V_{s}^{p}(\Phi)$ for all $s \in \mathbb{N}_{0}$. The corresponding sequence space is $Q_{F, p}=\bigcap_{s \in \mathbb{N}_{0}} \ell_{s}^{p}, p \in[1, \infty]$, which is the space of rapidly decreasing sequences s. By Corollary 3.12 it follows that the definition of $X_{F, p}$ does not depend on $p \in[1, \infty]$. So we use notation X_{F}, Q_{F} instead of $X_{F, p}, Q_{F, p}$. The set $\left\{\Phi(\cdot-k) \mid k \in \mathbb{Z}^{d}\right\}$ forms a F-frame for X_{F} since it forms a Banach frame for every space in the intersection (see [23] for the definition).

Since the corresponding function space for s is the space of rapidly decreasing functions $\mathcal{S}=\left\{f\left|\|f\|_{m}=\sup _{n \leq m}\left(1+|x|^{2}\right)^{m / 2}\right| f^{(n)}(x) \mid<+\infty\right\}$, and its dual is \mathcal{S}^{\prime} - the space of tempered distributions, we obtain that the dual space X_{F}^{\prime} is isomorphic to (a complemented subspace of) \mathcal{S}^{\prime}.

Denote by $\mathcal{P}(-\pi, \pi)$ the space of smooth 2π - periodic functions on \mathbb{R}^{d} with the family of norms $|\theta|_{k}=\sup \left\{\left|\theta^{(k)}(t)\right| ; t \in(-\pi, \pi)\right\}, k \in \mathbb{N}_{0}$. It is a Fréchet space and its dual is the space of 2π-periodic tempered distributions. We say that T is a 2π-periodic distribution if it is a tempered distribution on \mathbb{R}^{d} and $T=T(\cdot+2 j \pi)$, for all $j \in \mathbb{Z}^{d}$. Denote by $\mathcal{P}^{\prime}(-\pi, \pi)$ the space of periodic tempered distributions (see [24]). Recall that $\mathcal{F}(h)=\hat{h}=\int_{\mathbb{R}^{d}} \mathrm{e}^{-2 \pi \sqrt{-1} t} \cdot h(t) \mathrm{d} t$ for $h \in L^{1}$.
Theorem 4.1. Let $\Phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{T} \in \bigcap_{s \geq 0}\left(W_{s}^{1}\right)^{r}$ and $\Psi=\left(\psi_{1}, \ldots, \psi_{r}\right)^{T}$ be its dual frame (according to v) of Theorem 3.10). Then

$$
X_{F}=\mathcal{F}^{-1}\left(\sum_{i=1}^{r} \hat{\phi}_{i} \cdot \mathcal{P}(-\pi, \pi)\right), \quad X_{F}^{\prime}=\mathcal{F}^{-1}\left(\sum_{i=1}^{r} \hat{\psi}_{i} \cdot \mathcal{P}^{\prime}(-\pi, \pi)\right)
$$

in the topological sense. Let

$$
f=\sum_{k=1}^{r} \sum_{p \in \mathbb{Z}^{d}} c_{p}^{k} \phi_{k}(\cdot-p) \in X_{F} \quad \text { and } F=\sum_{i=1}^{r} \sum_{j \in \mathbb{Z}^{d}} d_{j}^{i} \psi_{i}(\cdot-j) \in X_{F}^{\prime} .
$$

The dual pairing is given by

$$
\begin{equation*}
\langle F, f\rangle=\sum_{i=1}^{r} \sum_{k=1}^{r}\left\langle\widehat{\psi}_{i}(\xi) \widehat{\phi}_{k}(-\xi) \sum_{j \in \mathbb{Z}^{d}} d_{j}^{i} \mathrm{e}^{2 \pi j \xi \sqrt{-1}}, \sum_{p \in \mathbb{Z}^{d}} c_{p}^{k} \mathrm{e}^{-2 \pi p \xi \sqrt{-1}}\right\rangle \tag{4.1}
\end{equation*}
$$

where $f=\sum_{k=1}^{r} \sum_{p \in \mathbb{Z}^{d}} c_{p}^{k} \phi_{k}(\cdot-p) \in X_{F}$ and $F=\sum_{i=1}^{r} \sum_{j \in \mathbb{Z}^{d}} d_{j}^{i} \psi_{i}(\cdot-j) \in X_{F}^{\prime}$.
In particular, we have $\int_{\mathbb{R}^{d}} \varphi_{i} \psi_{k} \mathrm{~d} t=\int_{\mathbb{R}^{d}} \widehat{\varphi_{i}}(\xi) \widehat{\psi_{k}}(-\xi) \mathrm{d} \xi=\delta_{i k}, 1 \leq i, k \leq r$.
Proof. Since $\sum_{p \in \mathbb{Z}^{d}} c_{p}^{k} \mathrm{e}^{2 \pi \sqrt{-1} p \xi} \in \mathcal{P}(-\pi, \pi)$, we obtain the structure of $f \in X_{F}$ as in the theorem. The same explanation works for X_{F}^{\prime}.

By the fact that $\langle F(x), f(x)\rangle=\langle\widehat{F}(\xi), \widehat{f}(-\xi)\rangle$, we have that (4.1) follows.
Let $d_{0}^{i}=\delta_{i k}, i=1, \ldots, r$, and $d_{j}^{i}=0, j \neq 0$, and, also, let $c_{0}^{k}=\delta_{i k}$ for $k=1, \ldots, r$ and $c_{p}^{k}=0, p \neq 0$. Using that, we obtain

$$
\langle F(\xi), f(\xi)\rangle=\sum_{i=1}^{r} \sum_{k=1}^{r}\left\langle\widehat{\psi}_{i}(\xi), \widehat{\phi}_{k}(-\xi) d_{0}^{i}, c_{0}^{k}\right\rangle=\int_{\mathbb{R}^{d}} \widehat{\psi}_{k_{0}}(\xi) \widehat{\phi}_{k_{0}}(-\xi) \mathrm{d} \xi, 1 \leq k_{0} \leq r .
$$

On the other hand $f(x)=\left\langle f(x), \psi_{k_{0}}(x)\right\rangle \phi_{k_{0}}(x)$ and $f=\phi_{k_{0}}$ for some $1 \leq$ $k_{0} \leq r$, so we obtain $\left\langle f, \psi_{k_{0}}\right\rangle=1$. Since $F=\psi_{k_{0}}$, we get $\langle F, f\rangle=\left\langle f, \psi_{k_{0}}\right\rangle=1$. Finally, we have $\int_{\mathbb{R}^{d}} \widehat{\varphi_{i}}(\xi) \widehat{\psi_{k}}(-\xi) \mathrm{d} \xi=\delta_{i k}, 1 \leq i, k \leq r$.

Let $\beta \in(0,1)$. Now, we consider weights $\mu_{k}=\mathrm{e}^{k|x|^{\beta}}, k \in \mathbb{N}$, and the corresponding spaces $V_{\mu_{k}}^{p}(\Phi)$ and their intersection $X_{F, p}^{(\beta)}=\bigcap_{k \in \mathbb{N}} V_{\mu_{k}}^{p}(\Phi)$. It is a Fréchet space not depending on p, so we use notation $X_{F}^{(\beta)}$. The corresponding sequence space is $s^{(\beta)}=\bigcap_{k \in \mathbb{N}} \ell_{\mu_{k}}^{p}$, i.e., the space of subexponentially rapidly decreasing sequences determining the space of periodic tempered ultradistributions via the mapping $s^{(\beta)} \ni\left(a_{j}\right)_{j \in \mathbb{Z}^{d}} \leftrightarrow \sum_{j \in \mathbb{Z}^{d}} a_{j} \mathrm{e}^{j \xi \sqrt{-1}} \in \mathcal{P}(-\pi, \pi)$ (see [22]).

5 Construction of p-frames

Let θ be a smooth non negative function such that $\theta(x)=1, x \in[-\pi+\varepsilon, \pi-\varepsilon]$, for $0<\varepsilon<\frac{1}{4}$, and $\operatorname{supp} \theta \subseteq[-\pi, \pi]$. Let $\phi_{k}(x)=\mathcal{F}^{-1}(\theta(\cdot+k \pi))(x), x \in \mathbb{R}$,
$k \in \mathbb{Z}$. We can divide every $\theta(\cdot+k \pi)$ with the $\operatorname{sum} \sum_{k \in \mathbb{Z}} \theta(\cdot+k \pi)$ in order to obtain the partition of unity. By the Paley-Wiener theorem, we have that $\phi_{k} \in W_{\mu}^{1}(\mathbb{R}), k \in \mathbb{Z}$. We say that set $\left\{\phi_{i_{1}}, \phi_{i_{2}}, \ldots, \phi_{i_{r}}\right\}, i_{1}<i_{2}<\cdots<i_{r}$, is a set of r successive functions if $i_{n}=i_{1}+(n-1), n=2, \ldots, r$. Note that for every $\xi \in \mathbb{R}$ there exist $\xi_{0} \in(-\pi, \pi)$ and $k \in \mathbb{Z}$ such that $\xi=\xi_{0}+k \pi$.

Now, we consider the following three cases.
1° The case of two successive functions.
If $\Phi=\left(\phi_{i}, \phi_{i+1}\right)^{T}, i \in \mathbb{Z}$, then $\operatorname{rank}\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right], \xi \in \mathbb{R}$, is not a constant function on \mathbb{R}. In this case, for the matrix $\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]$, we obtain the $2 \times \infty$ matrix

$$
A\left(\xi_{0}\right)=\left[\begin{array}{ccccc}
\cdots & 0 & \alpha_{0}^{\xi_{0}} & 0 & 0 \cdots \\
\cdots & 0 & \alpha_{-1}^{\xi_{0}} & \alpha_{1}^{\xi_{0}} & 0 \cdots
\end{array}\right]
$$

which depends on $\xi_{0} \in(-\pi, \pi)$, where $\alpha_{-1}^{\xi_{0}}=\theta\left(\xi_{0}-\pi\right), \alpha_{0}^{\xi_{0}}=\theta\left(\xi_{0}\right)$ and $\alpha_{1}^{\xi_{0}}=\theta\left(\xi_{0}+\pi\right)$.

For $\xi_{0}^{1}=\frac{\pi}{2}$, we have $\alpha_{0}^{\xi_{0}^{1}} \neq 0, \alpha_{-1}^{\xi_{0}^{1}} \neq 0$, and for $\xi_{0}^{2}=-\frac{\pi}{2}$, we have $\alpha_{0}^{\xi_{0}^{2}} \neq 0$, $\alpha_{1}^{\xi_{0}^{2}} \neq 0$. Since $\operatorname{rank} A\left(\xi_{0}^{1}\right)=1$ and $\operatorname{rank} A\left(\xi_{0}^{2}\right)=2$, we conclude that for successive functions $\phi_{i}, \phi_{i+1}, i \in \mathbb{Z}$, the rank of the matrix $\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]$ is not a constant function on \mathbb{R}.
2° The case of three successive functions.
If $\Phi=\left(\phi_{i}, \phi_{i+1}, \phi_{i+2}\right)^{T}, i \in \mathbb{Z}$, then $\operatorname{rank}\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]$ is a constant function on \mathbb{R}. We have that $\operatorname{rank}\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]=2$, for all $\xi \in \mathbb{R}$.

Indeed, the matrix $\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right], \xi \in \mathbb{R}$, is $3 \times \infty$ matrix

$$
B\left(\xi_{0}\right)=\left[\begin{array}{llllll}
\cdots & 0 & \alpha_{0}^{\xi_{0}} & 0 & 0 & \cdots \\
\cdots & 0 & \alpha_{-1}^{\xi_{0}} & \alpha_{1}^{\xi_{0}} & 0 & \cdots \\
\cdots & 0 & 0 & \alpha_{0}^{\xi_{0}} & 0 & \cdots
\end{array}\right]
$$

which depends on $\xi_{0} \in(-\pi, \pi)$, where $\alpha_{-1}^{\xi_{0}}=\theta\left(\xi_{0}-\pi\right)$, $\alpha_{0}^{\xi_{0}}=\theta\left(\xi_{0}\right)$ and $\alpha_{1}^{\xi_{0}}=\theta\left(\xi_{0}+\pi\right)$. Since, $\theta\left(\xi_{0}\right) \neq 0$ for all $\xi_{0} \in(-\pi, \pi)$, the matrix $B\left(\xi_{0}\right)$ has 2 columns with non-zero elements for all $\xi_{0} \in(-\pi, \pi)$. So, $\operatorname{rank}\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]$ is a constant function on \mathbb{R} and $\operatorname{rank}\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]=2$, for all $\xi \in \mathbb{R}$.
3° The case of $r>3$ successive functions.
By taking $r+1$ successive functions $\phi_{i}, \phi_{i+1}, \ldots, \phi_{i+r}, r>2$, we have different situations described in the next lemma.

Lemma 5.1. a) If $\Phi=\left(\phi_{i}, \phi_{i+1}, \ldots, \phi_{i+r}\right)^{T}$, for $i \in \mathbb{Z}, r \in 2 \mathbb{N}+1$, then $\operatorname{rank}\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]$ is not a constant function on \mathbb{R}.
b) If $\Phi=\left(\phi_{i}, \phi_{i+1}, \ldots, \phi_{i+r}\right)^{T}, i \in \mathbb{Z}, r \in 2 \mathbb{N}$, then $\operatorname{rank}\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]$ is a constant function on \mathbb{R} and we have, for all $\xi \in \mathbb{R}$, and $r=2 n, n \in \mathbb{N}$, $\operatorname{rank}\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]=n+1$.

Proof. Since supports of products $\widehat{\phi}_{i_{1}}\left(\xi+2 j_{1} \pi\right) \widehat{\phi}_{i_{2}}\left(\xi+2 j_{2} \pi\right)$ are non-empty if the arguments are of the form $\xi-\pi, \xi, \xi+\pi$, modulo $2 j \pi, j \in \mathbb{Z}$, we have that
only blocks with elements

$$
\left[\begin{array}{ll}
\theta(\xi) & \theta(\xi+2 \pi) \\
\theta(\xi-\pi) & \theta(\xi+\pi)
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{ll}
\theta(\xi-\pi) & \theta(\xi+\pi) \\
\theta(\xi-2 \pi) & \theta(\xi)
\end{array}\right]
$$

can determine the rank of the matrix $\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]$. For any other choice of 2×2 matrix, we get determinant equal 0 .
(a) Let $\Phi=\left(\phi_{i}, \phi_{i+1}, \ldots, \phi_{i+(2 n-1)}\right)^{T}, n \in \mathbb{N}$.

For the matrix $\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]$, we obtain the $r \times \infty$ matrix

$$
A_{r}\left(\xi_{0}\right)=\left[\begin{array}{lllllllll}
\cdots & \alpha_{0}^{\xi_{0}} & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots \\
\cdots & \alpha_{-1}^{\xi_{0}} & \alpha_{1}^{\xi_{0}} & 0 & 0 & \cdots & 0 & 0 & \cdots \\
\cdots & 0 & \alpha_{0}^{\xi_{0}} & 0 & 0 & \cdots & 0 & 0 & \cdots \\
\cdots & 0 & \alpha_{-1}^{\xi_{0}} & \alpha_{1}^{\xi_{0}} & 0 & \cdots & 0 & 0 & \cdots \\
\cdots & 0 & 0 & \alpha_{0}^{\xi_{0}} & 0 & \cdots & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\
\cdots & 0 & 0 & 0 & 0 & \cdots & \alpha_{0}^{\xi_{0}} & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & \cdots & \alpha_{-1}^{\xi_{0}} & \alpha_{1}^{\xi_{0}} & \cdots
\end{array}\right]
$$

where $\alpha_{-1}^{\xi_{0}}=\theta\left(\xi_{0}-\pi\right), \alpha_{0}^{\xi_{0}}=\theta\left(\xi_{0}\right)$ and $\alpha_{1}^{\xi_{0}}=\theta\left(\xi_{0}+\pi\right), \xi_{0} \in(-\pi, \pi)$.
For $\xi_{0}^{1}=\frac{\pi}{2}$, we have $\alpha_{0}^{\xi_{0}^{1}} \neq 0, \alpha_{-1}^{\xi_{0}^{1}} \neq 0$, and for $\xi_{0}^{2}=-\frac{\pi}{2}$, we obtain $\alpha_{0}^{\xi_{0}^{2}} \neq 0$, $\alpha_{1}^{\xi_{0}^{2}} \neq 0$. Since rank $A_{r}\left(\xi_{0}^{1}\right)=n$ and $\operatorname{rank} A_{r}\left(\xi_{0}^{2}\right)=n+1$, we conclude that for even number of successive functions $\phi_{i}, \phi_{i+1}, \ldots, \phi_{i+(2 n-1)}, i \in \mathbb{Z}, n \in \mathbb{N}$, the rank of the matrix $\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]$ is not a constant function on \mathbb{R}.
(b) Let $\Phi=\left(\phi_{i}, \phi_{i+1}, \ldots, \phi_{i+2 n}\right)^{T}, i \in \mathbb{Z}, n \in \mathbb{N}$. The matrix

$$
\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]=\left[\begin{array}{llllllllll}
\cdots & 0 & \alpha_{0}^{\xi_{0}} & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots \\
\cdots & 0 & \alpha_{-1}^{\xi_{0}} & \alpha_{1}^{\xi_{0}} & 0 & 0 & \cdots & 0 & 0 & \cdots \\
\cdots & 0 & 0 & \alpha_{0}^{\xi_{0}} & 0 & 0 & \cdots & 0 & 0 & \cdots \\
\cdots & 0 & 0 & \alpha_{-1}^{\xi_{0}} & \alpha_{1}^{\xi_{0}} & 0 & \cdots & 0 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \\
\cdots & 0 & 0 & 0 & 0 & 0 & \cdots & \alpha_{-1}^{\xi_{0}} & \alpha_{1}^{\xi_{0}} & \cdots \\
\cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & \alpha_{0}^{\xi_{0}} & \cdots
\end{array}\right]
$$

has the constant rank on \mathbb{R}. Indeed, since $\alpha_{0}^{\xi_{0}} \neq 0$ for all $\xi_{0} \in(-\pi, \pi)$, the matrix $\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]$ has $n+1$ columns with non-zero elements for all $\xi \in \mathbb{R}$ and $\operatorname{rank}\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]=n+1$, for all $\xi \in \mathbb{R}$.

As a consequence of Corollary 3.10 and Lemma 5.1. 1° we have the next result.

Theorem 5.2. Let $\Phi=\left(\phi_{i}, \phi_{i+1}, \ldots, \phi_{i+2 n}\right)^{T}$, for $i \in \mathbb{Z}, n \in \mathbb{N}$. Then $V_{\mu}^{p}(\Phi)$ is closed in L_{μ}^{p}, for any $p \in[1, \infty]$, and $\left\{\phi_{i+s}(\cdot-j) \mid j \in \mathbb{Z}, 0 \leq s \leq 2 n\right\}$ is a p-frame for $V_{\mu}^{p}(\Phi)$ for any $p \in[1, \infty]$.

Remark 5.3. In this way we obtain the sequence of closed spaces $V_{\mu}^{p}\left(\phi_{0}, \phi_{1}, \phi_{2}\right)$, $V_{\mu}^{p}\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right), V_{\mu}^{p}\left(\phi_{0}, \phi_{2}, \ldots, \phi_{6}\right)$, etc. We also conclude that spaces generated with even numbers of successive functions, for example $V_{\mu}^{p}\left(\phi_{0}, \phi_{1}\right)$, $V_{\mu}^{p}\left(\phi_{0}, \phi_{1}, \ldots, \phi_{5}\right)$, are not closed subspaces of L_{μ}^{p}.

Theorem 5.4. Let $\Phi=\left(\phi_{k_{1}}, \phi_{k_{2}}, \ldots, \phi_{k_{r}}\right)^{T}, k_{1}<k_{2}<\cdots<k_{r}, r \in \mathbb{N}$, $k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{Z}$, and $V_{\mu, k_{1}, k_{2}, \ldots, k_{r}}^{p}=V_{\mu}^{p}(\Phi)$. We consider the following cases.
i) $k_{i+1}-k_{i}>1, i=1, \ldots, r-1$;
ii) If for some $i_{0} \in\{1,2, \ldots, r\}$ holds $k_{i_{0}+1}-k_{i_{0}}=1$, then there exists $n \in \mathbb{N}, 2 \leq 2 n \leq r$, such that $k_{i_{0}}+2, k_{i_{0}}+3, \ldots, k_{i_{0}}+2 n$ are elements of the set $\left\{k_{1}, \ldots, k_{r}\right\}$.

In these cases the following statements hold.
$1^{\circ} \operatorname{rank}\left[\widehat{\Phi}(\xi+2 j \pi)_{j \in \mathbb{Z}}\right]$ is a constant function for all $\xi \in \mathbb{R}$.
$2^{\circ} V_{\mu}^{p}(\Phi)$ is closed in L_{μ}^{p} for any $p \in[1, \infty]$.
$3^{\circ} \quad\left\{\phi_{k_{i}}(\cdot-j) \mid j \in \mathbb{Z}, 1 \leq i \leq r\right\}$ is a p-frame for $V_{\mu}^{p}(\Phi)$ for any $p \in[1, \infty]$.
Remark 5.5. (1) We refer to [4] and [26] for the γ-dense set $X=\left\{x_{j} \mid j \in J\right\}$. Let $\phi_{k}(x)=\mathcal{F}^{-1}(\theta(\cdot-k \pi))(x), x \in \mathbb{R}$. Following the notation of [26], we put $\psi_{x_{j}}=\phi_{x_{j}}$ where $\left\{x_{j} \mid j \in J\right\}$ is γ-dense set determined by $f \in V^{2}(\phi)=$ $V^{2}\left(\mathcal{F}^{-1}(\theta)\right)$. Checking the proofs of Theorems 3.1, 3.2 and 4.1 in [26], we obtain the same conclusions as in these theorems. These theorems show the conditions and explicit C_{p} and c_{p} such that the inequality

$$
c_{p}\|f\|_{L_{\mu}^{p}} \leq\left(\sum_{j \in J}\left|\left\langle f, \psi_{x_{j}}\right\rangle \mu\left(x_{j}\right)\right|^{p}\right)^{1 / p} \leq C_{p}\|f\|_{L_{\mu}^{p}}
$$

holds. This inequality guarantee the feasibility of a stable and continuous reconstruction algorithm in the signal spaces $V_{\mu}^{p}(\Phi)$.
(2) Since the spectrum of the Gram matrix $[\widehat{\Phi}, \widehat{\Phi}](\xi)$, for Φ defined in Theorem 5.4 is bounded and bounded away from zero (see [8), then the family $\{\Phi(\cdot-j) \mid j \in \mathbb{Z}\}$ forms a p-Riesz basis for $V_{\mu}^{p}(\Phi)$.
(3) For the appropriate choice of function Φ, for example Φ defined in Theorem 5.4, the associated Gram matrix satisfies a suitable Munckenhoupt A_{2} condition (see [21), so the system $\{\Phi(\cdot-j) \mid j \in \mathbb{Z}\}$ is stable in $L_{\mu}^{2}(\mathbb{R})$.
(4) Frames of the above type may be useful in applications since they satisfy assumptions of Theorem 3.1 and Theorem 3.2 in [5]. They show that error analysis for sampling and reconstruction can be tolerated, or that the sampling and reconstruction problem in shift-invariant space is robust with respect to appropriate set of functions $\phi_{k_{1}}, \ldots, \phi_{k_{r}}$.

Acknowledgment

The authors are indebted to the referee for pointing out ℓ_{μ}^{p}-stability of the synthesis operator which helped us to improve and simplify the proof of the main theorem and include Theorem 3.8 in our manuscript. Also, we are grateful to the referee for the additional useful literature suggested by him.

The authors were supported in part by the Serbian Ministry of Science and Technological Developments (Project 174024).

References

[1] A. Aldroubi, K. Gröchenig, Non-uniform sampling and reconstruction in shift-invariant spaces. SIAM Review 43(4) (2001), 585-620.
[2] A. Aldroubi, Q. Sun, W. Tang, p-frames and shift-invariant subspaces of L^{p}. J. Fourier Anal. Appl. 7 (2001), 1-21.
[3] A. Aldroubi, Q. Sun, W. Tang, Non-uniform sampling in multiply generated shift-invariant subspaces of $L^{p}\left(\mathbb{R}^{d}\right)$. Wavelet analysis and applications (Guangzhou, 1999), 18, AMS/IP Stud. Adv. Math., 25, Amer. Math. Soc., Providence, RI, 2002.
[4] A. Aldroubi, Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces. Appl. Comput. Harmon. Anal. 13 (2002), 151-161.
[5] A. Aldroubi, I. Krishtal, Robustness of sampling and reconstruction and Beurling-Landau type theorems for shift-invariant spaces. Appl. Comput. Harmon. Anal. 20(2) (2006), 250-260.
[6] A. Aldroubi, M. Unser, Sampling procedure in function spaces and asymptotic equivalence with Shannon's sampling theory. Numer. Funct. Anal. Optim. 15 (1994), 1-21.
[7] A. Aldroubi, A. Baskakov, I. Krishtal, Slanted matrices, Banach frames, and sampling. J. Funct. Anal. 255 (2008), 1667-1691.
[8] C. de Boor, R.A. DeVore, A. Ron, The structure of finitely generated shift-invariant spaces in $L^{2}\left(\mathbb{R}^{d}\right)$. J. Funct. Anal. 119(1) (1994), 37-78.
[9] R.A. DeVore, B. Jawerth, B.J. Lucier, Image compression through wavelet transform coding. IEEE Trans. Inform. Theory 38 (1992), 719-746.
[10] H.G. Feichtinger, Banach convolution algebras of Wiener type, in Functions, Series, Operators, Vols. I, II (Budapest, 1980). North-Holland, Amsterdam, 1983, 509-524.
[11] H.G. Feichtinger, K. Gröchening, A unified approach to atomic decomposition via integrable group representations. In:Proc. Conf. "Function Spaces and Applications", Lecture Notes in Maths, 1302, Berlin-Heidelberg-New York, Springer (1988), 52-73.
[12] H.G. Feichtinger, K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I, J. Funct. Anal. 86 (1989), 307-340.
[13] H.G. Feichtinger, Generalized amalgams, with applications to Fourier transform. Canad. J. Math. 42 (1990), 395-409.
[14] H.G. Feichtinger, K. Gröchenig, Iterative reconstruction of multivariate band-limited functions from irregular sampling values. SIAM J. Math. Anal. 23 (1992), 244-261.
[15] H.G. Feichtinger, K. Gröchenig, Theory and practice of irregular sampling, in Wavelets-Mathematics and Applications. J.J. Benedetto and W. Frazier, eds., CRC, Boca Raton, FL, 1993, 305-363.
[16] H.G. Feichtinger, K. Gröchenig, T. Strohmer, Efficient numerical methods in nonuniform sampling theory. Numer. Math. 69 (1995), 423-440.
[17] H.G. Feichtinger, T. Strohmer, eds., Gabor Analysis and Algorithms. Birkhäuser, Boston, 1998.
[18] K. Gröchening, Describing functions: Atomic decomposition versus frames. Monatsh. Math 112 (1991), 1-41.
[19] R.Q. Jia, C.A. Micchelli, On linear independence of integer translates of a finite number of functions. Proc. Edinburgh Math. Soc. 36 (1992), 69-85.
[20] R.Q. JIA, Stability of the shifts of a finite number of functions. J. Approx. Theory 95 (1998), 194-202.
[21] M. Nielsen, On stability of finitely generated shift-invariant systems. J. Fourier Anal. Appl. 16(6) (2010), 901-920.
[22] S. Pilipović, Structural theorems for periodic ultradistributions. Proc Amer. Math. Soc. 98(2) (1986), 261-266.
[23] S. Simić, Fréchet frames for shift invariant weighted spaces. NSJOM 39(2) (2009), 119-128.
[24] R.S. Strichartz, A Guide to Distribution Theory and Fourier Transforms. World Scientific, New Jersey, 1994.
[25] C.E. Shin, Q. Sun, Stability of localized operators. J. Funct. Anal. 256(8) (2009), 2417-2439.
[26] J. Xian, S. Li, Sampling set conditions in weighted multiply generated shift-invariant spaces and their applications. Appl. Comput. Harmon. Anal. 23(2) (2007), 171-180.
${ }^{1}$ Department of Mathematics and Informatics, Faculty of Science,
University of Novi Sad,
Trg Dositeja Obradovica 4, 21000 Novi Sad,
Serbia
E-mail:stevan.pilipovic@dmi.uns.ac.rs
${ }^{2}$ Department of Mathematics and Informatics, Faculty of Science,
University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
E-mail: suzanasimic@kg.ac.rs

