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Abstract. In this paper we prove the equivalence of the frame property and
the closedness for a weighted shift-invariant space

V p
µ (Φ) =

{ r∑

i=1

∑

j∈Zd

ci(j)φi(· − j)
∣∣∣ {ci(j)}j∈Zd ∈ ℓpµ

}
, p ∈ [1,∞],

which corresponds to Φ = Φr = (φ1, φ2, . . . , φr)
T ∈ (W 1

ω)
r. We, also, construct

a sequence Φ2k+1 and the sequence of spaces V p
µ (Φ

2k+1), k ∈ N, on R, with the
useful properties in sampling, approximations and stability.
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Key Words and Phrases:p-frame; Banach frame; weighted shift-invariant
space.

1 Introduction

In this paper, we investigate weighted shift-invariant spaces quoted in the
abstract by following the methods from [2] and [25]. Such spaces figure in sev-
eral areas of applied mathematics, notably in wavelet theory and approximation
theory ([2], [8]). In recent years, they have been extensively studied by many au-
thors (see [1]-[8], [14]-[16], [19], [20], [25], [26]). Sampling with non-bandlimited
functions in shift-invariant spaces is a suitable and realistic model for many
applications, such as modeling signals with the spectrum that is smoother then
in the case of bandlimited functions, or for the numerical implementation (see
[6], [9], [10], [12], [13], [17]). These requirements can often be met by choosing
appropriate functions in Φ. This means that the functions in Φ have a shape
corresponding to a particular impulse response of a device, or that they are
compactly supported or that they have a Fourier transform decaying smoothly
to zero as |ξ| → ∞.

Weighted shift-invariant spaces V p
µ (Φ), p ∈ [1,∞], where µ is a weight, were

introduced for the non uniform sampling as a direct generalization of the space
V p(Φ) ([1], [26]). The determination of p and the signal smoothness are used
for optimal compression and coding signals and images (see [9]).

1

http://arxiv.org/abs/1105.6105v1


The first aim of this paper is to show that the main result of [2] holds in
the case of weighted shift-invariant spaces which correspond to Lp

µ and ℓpµ, i.e.,
weighted Lp and ℓp spaces, respectively. Namely, we follow [2] and [25] and
prove assertions which need additional arguments depending on the weights.
We show that under the appropriate conditions on the frame vectors, there is
an equivalence between the concept of p-frames, Banach frames with respect
to ℓpµ and closedness of the space which they generate. A weighted analog of
Corollary 3.2 from [25] simplifies a part of the proof of our main result. Although
another part of the proof follows, step by step, the proof of the corresponding
theorem in [2], we think that it is not simple at all, and that it is worth to be
done.

The second aim of this paper is to construct V p
µ (Φ

2k+1) spaces with specially
chosen functions, φ0, φ1, . . ., φ2k, that generate a Banach frame for the shift-
invariant space V p

µ (Φ
2k+1). Actually, we take functions from a sequence {φi}i∈Z

so that the sequence of Fourier transforms φ̂i = θ(· + iπ), i ∈ Z, θ ∈ C∞
0 (R),

makes a partition of unity in the frequency domain (Z = N0∪−N,N is the set of
natural numbers and N0 = N∪{0}). We note that properties of the constructed
frame guarantee the feasibility of a stable and continuous reconstruction algo-
rithm in V p

µ (Φ) ([26]). Also, we note that {φi(· − k) | k ∈ Z, i = 1, . . . , r} forms

a Riesz basis for V p
µ (Φ) when the spectrum of the Gram matrix [Φ̂, Φ̂](ξ) is

bounded and bounded away from zero (see [8]). The d-dimensional case, d > 1,
is technically more complicated and because of that it is not considered in this
paper.

The paper is organized as follows. In Section 2 we quote basic properties
of subspaces of weighted Lp and ℓp spaces. The weighted shift-invariant spaces
are investigated in Section 3, where we presented our first result quoted in the
abstract, Theorem 3.10. In Section 4 we show relations between the dual of the
Fréchet space

⋂
s∈N0

V p
(1+|x|2)s/2(Φ) and the space of periodic distributions. The

case of periodic ultradistributions is obtain by using subexponential growth
functions. In Section 5, we use a special sequence of functions {φk | k ∈ N}
to construct a sequence of p-frames. Our construction shows that the sampling
and reconstruction problem in the shift-invariant spaces is robust. In the final
remark of Section 5, we list good properties of these frames.

2 Basic spaces

Denote by L1
loc(R

d) the space of measurable functions integrable over com-
pact subsets of Rd. For a nonnegative function ω ∈ L1

loc(R
d) we say that is

submultiplicative if ω(x + y) ≤ ω(x)ω(y), x, y ∈ R
d and a function µ on R

d is
ω-moderate if µ(x+y) ≤ Cω(x)µ(y), x, y ∈ R

d. We assume that ω is continuous
and symmetric and both µ and ω call weights, as usual. The standard class of
weights on R

d are of the polynomial type ωs(x) = (1 + |x|)s, s ≥ 0. To quan-

tify faster decay of functions we use the subexponential weights ω(x) = eα|x|
β

,
for some α > 0 and 0 < β < 1. Weighted Lp spaces with moderate weights
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are translation-invariant spaces (see [1]). We, also, consider weighted sequence
spaces ℓpµ(Z

d) with ω-moderate weight µ. Recall, a sequence c belongs to ℓpµ(Z
d)

if cµ belongs to ℓp(Zd).
In the sequel ω is a submultipicative weight, continuous and symmetric and

µ is ω-moderate. Let p ∈ [1,∞). Then (with obvious modification for p = ∞)

Lp
ω =

{
f
∣∣ ‖f‖Lp

ω
=
( ∫

[0,1]d

( ∑

j∈Zd

|f(x+ j)|ω(x+ j)
)p

dx
)1/p

< +∞
}
,

W p
ω :=

{
f
∣∣ ‖f‖Wp

ω
=
( ∑

j∈Zd

sup
x∈[0,1]d

|f(x+ j)|pω(j)p
)1/p

< +∞
}
.

Obviously, we have W p
ω ⊂ W q

ω ⊂ L∞
ω ⊂ Lq

ω ⊂ Lp
ω ⊂ Lp

ω, W
p
ω ⊂ W p

µ ⊂ W q
µ ⊂

Lq
µ and Lp

ω ⊂ Lp
µ, where 1 < p < q ≤ +∞. For p = 1 and ω = 1 we have

L1 = L1. We also have ℓ1ω ⊂ ℓpω ⊂ ℓqω ⊂ ℓqµ, for 1 < p < q ≤ +∞. From [1] we
have the following properties.

1) If f ∈ Lp
µ, g ∈ L1

ω and p ∈ [1,∞], then ‖f ∗ g‖Lp
µ
≤ ‖f‖Lp

µ
‖g‖L1

ω
.

2) If f ∈ Lp
µ, g ∈W 1

ω and p ∈ [1,∞], then ‖f ∗ g‖Wp
µ
≤ ‖f‖Lp

µ
‖g‖W 1

ω
.

3) If c ∈ ℓpµ and d ∈ ℓ1ω, then holds the inequality ‖c ∗ d‖ℓpµ ≤ ‖c‖ℓpµ‖d‖ℓ1ω .

Denote by WCp
µ, p ∈ [1,∞], a space of all 2π-periodic functions with their

sequences of Fourier coefficients in ℓpµ. LetD1 andD2 be the sequences of Fourier
coefficients of 2π-periodic functions K1 and K2, respectively. If D1 ∗D2 ∈ ℓpµ,
then D1 ∗D2 is the sequence of Fourier coefficients of the product K1K2. For
K = (K1, . . . ,Kr)

T ∈ (WCp
µ)

r , (T means transpose) define ‖K‖ℓpµ,∗
to be the

ℓpµ norm of its sequence of Fourier coefficients.

In the sequel we use the notation Φ = (φ1, . . . , φr)
T . Define ‖Φ‖H =

r∑
i=1

‖φi‖H, where H = Lp
ω, L

p
ω or W p

ω , p ∈ [1,∞].

We list several lemmas needed to prove our results. Their proofs are analo-
gous to the proof of the corresponding lemmas in [2].

Lemma 2.1. Let f ∈ Lp
µ and g ∈ W 1

ω, p ∈ [1,∞]. Then the sequence

{∫

Rd

f(x)g(x − j)dx
}
j∈Zd

∈ ℓpµ

and
∥∥∥
{ ∫

Rd

f(x)g(x− j)dx
}
j∈Zd

∥∥∥
ℓpµ

≤ ‖f‖Lp
µ
‖g‖W 1

ω
.

Let c = {ci}i∈N ∈ ℓpµ and f ∈ Lp
ω, p ∈ [1,∞]. We define, as in [2], their

semi-convolution f ∗′ c by (f ∗′ c)(x) =
∑

j∈Zd

cjf(x− j), x ∈ R
d.
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Lemma 2.2. a) If f ∈ Lp
ω and c ∈ ℓpµ, p ∈ [1,∞], then f ∗′ c ∈ Lp

µ and
‖f ∗′ c‖Lp

µ
≤ ‖c‖ℓpµ‖f‖Lp

ω
.

b) If f ∈ Lp
ω, p ∈ [1,∞], and c ∈ ℓ1µ, then ‖f ∗′ c‖Lp

µ
≤ ‖c‖ℓ1µ‖f‖Lp

ω
.

c) If f ∈ W p
ω , p ∈ [1,∞], and c ∈ ℓ1µ, then ‖f ∗′ c‖Wp

µ
≤ ‖c‖ℓ1µ‖f‖Wp

ω
,

d) If f ∈ W 1
ω and c ∈ ℓpµ, p ∈ [1,∞], then ‖f ∗′ c‖Wp

µ
≤ ‖c‖ℓpµ‖f‖W 1

ω
.

3 Characterization of V p
µ (Φ)

In [11] Feichtinger and Gröchening extended the notation of atomic decom-
position to Banach spaces ([10], [12]), while Gröchening [18] introduced a more
general concept of decomposition through Banach frames. We recall the defini-
tion.

Let X be a Banach space and Θ be an associated Banach space of scalar
valued sequences, indexed by I = N or I = Z. Let {fn} ⊂ X∗ and S : Θ → X
be given. The pair ({fn}n∈I , S) is called a Banach frame for E with respect to
Θ if

(1) {fn(x)}n∈I ∈ Θ for each x ∈ X ,

(2) there exist positive constants A and B with 0 < A ≤ B < +∞ such that
A‖x‖X ≤ ‖{fn(x)n∈I}‖θ ≤ B‖x‖X , x ∈ X ,

(3) S is a bounded linear operator such that S({fn(x)}n∈I) = x, x ∈ X .

It is said that a collection {φi(· − j) | j ∈ Z
d, 1 ≤ i ≤ r} is a p-frame for V p

µ (Φ)
if there exists a positive constant C (depending on Φ, p and ω)

C−1‖f‖Lp
µ
≤

r∑

i=1

∥∥∥
{∫

Rd

f(x)φi(x− j)dx
}
j∈Zd

∥∥∥
ℓpµ

≤ C‖f‖Lp
µ
, f ∈ V p

µ (Φ).

(3.1)
A typical application is the problem of finding a shift-invariant space model

that describes a given class of signals or images (e.g. the class of chest X-rays).
The observation set of r signals or images f1, . . . , fr may be theoretical samples,
or experimental data.

Recall [1], the shift-invariant spaces are defined by

V p
µ (Φ) :=

{
f ∈ Lp

µ | f(·) =
r∑

i=1

∑

j∈Zd

cij φi(· − j), {cij}j∈Zd ∈ ℓpµ, 1 ≤ i ≤ r
}
.

Remark 3.1. If Φ ∈ W 1
ω and µ is ω-moderate, then V p

µ (Φ) is a subspace (not
necessarily closed) of Lp

µ and W p
µ for any p ∈ [1,∞]. If r = 1 and {φ(· − j) | j ∈

Z
d} is a p-frame for V p

µ (φ), then V
p
µ (φ) is a closed subspace of Lp

µ and W p
µ for

p ∈ [1,∞] (see [23]).
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Let [Φ̂, Φ̂](ξ) =
[ ∑
k∈Zd

φ̂i(ξ+2kπ)φ̂j(ξ + 2kπ)
]
1≤i≤r, 1≤j≤r

where we assume

that φ̂i(ξ)φ̂j(ξ) is integrable for any 1 ≤ i, j ≤ r. Let A = (a(j))j∈Zd be an

r ×∞ matrix and AAT =
[ ∑
j∈Zd

ai(j)ai′ (j)
]
1≤i,i′≤r

. Then rankA = rankAAT .

Also, since [Φ̂, Φ̂](ξ) is continuous (as a function with r2 components) for

any Φ ∈ (L2
ω)

r, it follows that
{
ξ ∈ R

d | rank
[
Φ̂(ξ + 2kπ)k∈Zd

]
> k0

}
is an

open set for any k0 > 0 and Φ ∈ (L2
ω)

r.
Denote by Σµ

α the family of all α-slant matrices A = [a(j, k)j∈Zd,k∈Zd ] with

‖A‖Σω
α
=
∑

k∈Zd

sup
j,k∈Zd

|a(k, j)|χk+[0,1)d(k − αj) <∞,

where µ is a weight on R
d and α is a positive number. The slanted matrices

appear in wavelet theory, signal processing and sampling theory (see [25]). Note
Σµ

α ⊂ Σµ0

α for any weight µ where µ0 ≡ 1 is the trivial weight.
We assume in this subsection that Φ = (φ1, . . . , φr)

T ∈ (Lp
ω)

r for p ∈ [1,∞).
To prove Theorem 3.10, we need several lemmas. First we recall a result

from [2].

Lemma 3.2 ([2]). The following statements are equivalent.

1) rank
[
Φ̂(ξ + 2jπ)j∈Zd

]
is a constant function on R

d.

2) rank[Φ̂, Φ̂](ξ) is a constant function on R
d.

3) There exists a positive constant C independent of ξ such that

C−1[Φ̂, Φ̂](ξ) ≤ [Φ̂, Φ̂](ξ) [Φ̂, Φ̂](ξ)T ≤ C [Φ̂, Φ̂](ξ), ξ ∈ [−π, π]d.

The proofs of the following two lemmas are similar to proofs of the corre-
sponding lemmas from [2]; hence we will not include them here. The second
one provides a localization technique in Fourier domain. It allows us to replace
locally the generator Φ̂ of size r by Ψ̂1,λ of size k0.

Lemma 3.3. All the entries of [Φ̂, Φ̂](ξ) belong to WC1
ω and are continuous.

Lemma 3.4. Let the rank[Φ̂(ξ+2jπ)j∈Zd ] = k0 ≥ 1 for all ξ ∈ R
d. Then there

exist a finite index set Λ, points ηλ ∈ [−π, π]d, 0 ≤ δλ < 1/4, a nonsingular
2π-periodic r × r matrix Pλ(ξ) with all entries in the class WC1

ω and Kλ ⊂ Z
d

with cardinality k0 for all λ ∈ Λ, such that:
(i)

⋃
λ∈Λ

B(ηλ, δλ/2) ⊃ [−π, π]d, where B(x0, δ) denotes the open ball in R
d

with center x0 and radius δ;

(ii) Pλ(ξ)Φ̂(ξ) =

[
Ψ̂1,λ(ξ)

Ψ̂2,λ(ξ)

]
, ξ ∈ R

d, λ ∈ Λ, where Ψ1,λ and Ψ2,λ are

functions from R
d to Ck0 and Cr−k0 , respectively, satisfying

rank
[
Ψ̂1,λ(ξ + 2kπ)k∈Kλ

]
= k0, ξ ∈ B(ηλ, 2δλ),
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Ψ̂2,λ(ξ) = 0, ξ ∈ B(ηλ, 8δλ/5) + 2πZd.

Furthermore, there exist 2π-periodic C∞ functions hλ, λ ∈ Λ, on R
d such that∑

λ∈Λ

hλ(ξ) = 1, ξ ∈ R
d, and supphλ ⊂ B(ηλ, δλ/2) + 2πZd.

The next lemma is needed for the proof of Theorem 3.10. Although the
formulation is not the same as [2, Lemma 3], the proof is based on the same
procedure, and we omit it.

Lemma 3.5. (a) Let φ ∈ Lp
ωs

if p ∈ [1,∞) and φ ∈ W 1
ωs

if p = +∞. Assume
that

∑
j∈Zd

φ(· + j) = 0. Then for any function h on R
d which satisfies

|h(x)| ≤ C(1 + |x|)−s−d−1, |h(x) − h(y)| ≤ C
|x− y|

(1 + min{|x|, |y|})s+d+1
,

we have
lim

n→+∞
2−nd

∥∥∥
∑

j∈Zd

h(2−nj)φ(· − j)
∥∥∥
Lp

ωs

= 0.

(b) Let µ(x) = eα|x|
β

. Let φ ∈ Lp
µ if p ∈ [1,∞) and φ ∈ W 1

µ if p = +∞.

Assume that
∑

j∈Zd

φ(· + j) = 0. Then for any function h on R
d which satisfies

|h(x)| ≤ Ce−(α+d+1)|x|β , |h(x)− h(y)| ≤ C|x − y|e−(α+d+1)(1+min{|x|β,|y|β}),

we have
lim

n→+∞
2−nd

∥∥∥
∑

j∈Zd

h(2−nj)φ(· − j)
∥∥∥
Lp

µ

= 0.

Next, we give a result on the equivalence of ℓpµ-stability of the synthesis
operator SΦ for a different p ∈ [1,∞] (see [25]; here we have Λ = {1, 2, . . . , r}).

Proposition 3.6. [25, Corollary 3.2] Let Φ = (φ1, . . . , φr)
T ∈ (W 1

ω)
r, p ∈

[1,∞] and µ is ω-moderate. Define the synthesis operator SΦ : (ℓpµ(Z
d))r 7→

V p
µ (Φ) by

SΦ : c = {cij}j∈Zd,1≤i≤r 7→
r∑

i=1

∑

j∈Zd

cijφi(· − j).

If the synthesis operator SΦ has ℓpµ-stability for some p ∈ [1,∞], i.e., there exists
a positive constant C such that

C−1‖c‖(ℓpµ(Zd))r ≤ ‖SΦc‖Lp
µ
≤ C‖c‖(ℓpµ(Zd))r , (3.2)

for all c ∈ (ℓpµ(Z
d))r, then the synthesis operator SΦ has ℓqµ-stability for any

q ∈ [1,∞].

As a consequence of the previous proposition, we have the next result.
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Proposition 3.7. [25, Corollary 3.3] Let p ∈ [1,∞] and Φ = (φ1, . . . , φr)
T ∈

(W 1
ω)

r, and µ ω-moderate. If the synthesis operator SΦ has ℓpµ-stability, then

there exists another family Ψ = (ψ1, . . . , ψr)
T ∈ (W 1

ω)
r such that the inverse of

the synthesis operator SΦ is given by

(SΦ)
−1(f) =

{∫

Rd

f(x)ψi(x− j)dx
}
1≤i≤r,j∈Zd

, f ∈ V p
µ .

Proposition 3.6 and 3.7 imply:

Theorem 3.8. Let Φ = (φ1, . . . , φr)
T ∈ (W 1

ω)
r, p0 ∈ [1,∞], and µ is ω-

moderate. Then the following three statements are equivalent.

a) The synthesis operator SΦ has ℓp0

µ -stability.

b) V p0

µ (Φ) is closed in Lp0

µ .

c) There exists Ψ = (ψ1, . . . , ψr)
T ∈ (W 1

ω)
r, such that

f =

r∑

i=1

∑

j∈Zd

〈f, ψi(· − j)〉φi(· − j), f ∈ V p0

µ (Φ).

Also we have the next assertion.
d) If the synthesis operator SΦ has ℓp0

µ -stability, then the collection {φi(·−j) |

j ∈ Z
d, 1 ≤ i ≤ r} is a p0-frame for V p0

µ (Φ).

Proof. The implication a) ⇒ c) is a consequence of Proposition 3.6 (see Propo-
sition 3.7).

c) ⇒ a): Let f =
r∑

i=1

∑
j∈Zd

〈f, ψi(· − j)〉φi(· − j) and

ci = {〈f, ψi(· − j)〉}j∈Zd , 1 ≤ i ≤ r.

Then

‖c‖(ℓpµ)r =

r∑

i=1

∥∥∥
{∫

Rd

f(x)ψi(x− j)dx
}
j∈Zd

≤ C‖f‖Lp0
µ
,

where C =
r∑

i=1

‖ψi‖W 1
ω
. Using Lemma 2.1 and the inequality (2.2), we obtain

the right-hand side of (3.2).
The equivalence a) ⇔ b) follows from standard functional analytic arguments

(see [2, Theorem 2, Lemma 4]).
d) Lemma 2.1 implies that {〈f, φi(· − j)〉} ∈ ℓp0

µ , 1 ≤ i ≤ r, and

r∑

i=1

∥∥∥
{∫

Rd

f(x)φi(x− j)dx
}
j∈Zd

≤ ‖f‖Lp0
µ

r∑

i=1

‖φi‖W 1
ω
.
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Now, ℓpµ-stability implies

‖f‖Lp0
µ

≤ C

r∑

i=1

∥∥∥
{∫

Rd

f(x)φi(x − j)dx
}
j∈Zd

∥∥∥
ℓ
p0
µ

.

Remark 3.9. Note that ℓpµ-stability of the synthesis operator implies ℓqµ-stability,
for any q ∈ [1,∞] ([25]), so the statements b), c) and d), do not depend on
p ∈ [1,∞].

Now, we give our main result.

Theorem 3.10. Let Φ = (φ1, . . . , φr)
T ∈ (W 1

ω)
r, p0 ∈ [1,∞], and µ is ω-

moderate. Then the following statements are equivalent.

i) V p0

µ (Φ) is closed in Lp0

µ .

ii) {φi(· − j) | j ∈ Z
d, 1 ≤ i ≤ r} is a p0-frame for V p0

µ (Φ).

iii) There exists a positive constant C such that

C−1[Φ̂, Φ̂](ξ) ≤ [Φ̂, Φ̂](ξ)[Φ̂, Φ̂](ξ)T ≤ C[Φ̂, Φ̂](ξ), ξ ∈ [−π, π]d.

iv) There exist positive constants C1 and C2 (depending on Φ and ω) such
that

C1‖f‖Lp0
µ

≤ inf
f=

r∑

i=1

φi∗′ci

r∑

i=1

‖{cij}j∈Zd‖ℓp0µ ≤ C2‖f‖Lp0
µ
, f ∈ V p0

µ (Φ).

(3.3)

v) There exists Ψ = (ψ1, . . . , ψr)
T ∈ (W 1

ω)
r, such that

f =

r∑

i=1

∑

j∈Zd

〈f, ψi(·−j)〉φi(·−j) =
r∑

i=1

∑

j∈Zd

〈f, φi(·−j)〉ψi(·−j), f ∈ V p0

µ (Φ).

Proof. If the synthesis operator has ℓpµ-stability, then the statement iv) is sat-
isfied. Conversely, if the statement iv) is satisfied, then the right-hand side of
(3.2) (with p = p0) immediately follows. Using c) from Theorem 3.8, we ob-
tain the left-hand side of (3.2). Hence, by Theorem 3.8, we have i) ⇔ iv) and
iv) ⇒ ii). The equivalence iv) ⇔ v) follows from Lemma 2.1.

We follow [2] to prove iii) ⇒ v) and ii) ⇒ iii), and carefully check the use
of weights.

iii) ⇒ v). Let Bλ(ξ) = Hλ(ξ)Pλ(ξ)T

( [
Ψ̂1,λ, Ψ̂1,λ

]
(ξ)−1 0

0 I

)
Pλ(ξ),

for hλ(ξ), Pλ(ξ) and Ψ̂1,λ as in Lemma 3.4. We have Bλ(ξ) ∈ WCp
ω, for all

8



p ∈ [1,+∞]. Define Ψ̂(ξ) =
∑
λ∈Λ

hλ(ξ)Bλ(ξ)Φ̂(ξ). One has Ψ ∈ W 1
ω . For

any f ∈ V p
µ (Φ), define g(x) =

r∑
i=1

∑
j∈Zd

〈f, ψi(x − j)〉φi(x − j), x ∈ R
d. Since

f ∈ V p
µ (Φ), there exists a 2π-periodic distribution A(ξ) ∈ WCp

µ such that

f̂(ξ) = A(ξ)T Φ̂(ξ). By Lemma 3.4, we have ĝ(ξ) = f̂(ξ).

Since Ψ̂(ξ) =
∑
λ∈Λ

hλ(ξ)Bλ(ξ)Φ̂(ξ), for f =
r∑

i=1

∑
j∈Zd

〈f, φi(· − j)〉ψ(· − j) the

proof is similar.
ii) ⇒ iii). Let k0 = min

ξ∈Rd
rank

[
Φ̂(ξ + 2kπ)k∈Zd

]
and let

Ωk0
=
{
ξ ∈ R

d | rank
[
Φ̂(ξ + 2kπ)k∈Zd

]
> k0

}
.

Then Ωk0
6= R

d. It is sufficient to prove that Ωk0
= ∅ (see Lemma 3.2). Suppose

that Ωk0
6= ∅. Since Ωk0

is open set, then ∂Ωk0
6= ∅ and rank

[
Φ̂(ξ0+2kπ)

]
k∈Zd =

k0, for any ξ0 ∈ ∂Ωk0
, and max

ξ∈B(ξ0,δ)
rank

[
Φ̂(ξ + 2kπ)

]
k∈Zd > k0, δ > 0. By

Lemma 3.4, there exist a nonsingular 2π-periodic r × r matrix Pξ0(ξ) with all
entries in the class WC1

ω, δ0 > 0 and K0 ⊂ Z
d with cardinality k0. Define Ψξ0 ,

Ψ̂ξ0(ξ) as in Lemma 3.4. The construction of Ψξ0 and (2.2) imply Ψξ0 ∈ W 1
ω .

Choose n0 such that 2−n0 < δ0 and define αn(ξ), Hn,ξ0(ξ) and H̃n,ξ0(ξ) as in
[2]. For any 2π-periodic distribution F ∈ WCp0

µ define, gn, for n ≥ n0 +1, as in

[2]. Note that gn ∈ V p0

µ (Φ) and [ĝn, Ψ̂1,ξ0 ](ξ) = 0. This leads to

‖[ĝn, Φ̂](ξ)‖ℓp0µ,∗
≤ C‖gn‖Lp0

µ
‖F−1(Hn,ξ0(ξ)Ψ̂2,ξ0(ξ))‖L∞

ω
.

Using Lemma 3.5, we obtain lim
n→+∞

‖F−1(Hn,ξ0(ξ)Ψ̂2,ξ0(ξ))‖L∞

ω
= 0. There

exists a sequence ρn, n ≥ n0, such that ‖[ĝn, Φ̂](ξ)‖ℓp0µ,∗
≤ ρn‖gn‖Lp0

µ
and

lim
n→+∞

ρn = 0. This, together with the assumption ii) and

‖[ĝn, Φ̂](ξ)‖ℓp0µ,∗
=
∥∥∥
{∫

Rd

gn(ξ)Φ(ξ − j)dx
}
j∈Zd

∥∥∥
ℓ
p0
µ

≥ C‖gn‖Lp0
µ
,

leads to gn = 0, n ≥ n0 + 1. Then

H̃n,ξ0(ξ)[Ψ̂1,ξ0 , Ψ̂1,ξ0 ](ξ)(αn(ξ))
−1Ψ̂1,ξ0(ξ) = H̃n,ξ0(ξ)Ψ̂2,ξ0(ξ), (3.4)

for any 2π-periodic distribution F ∈ WCp0

µ and n ≥ n0 + 1. We, also, get

H̃n,ξ0(ξ)[Ψ̂1,ξ0 , Ψ̂1,ξ0 ](ξ)(αn(ξ))
−1Ψ̂1,ξ0(ξ) = 0, ξ ∈ B(ξ0, 2

−n0−1) + 2πZd.

So, from (3.4) and the fact that it is valid for all n ≥ n0+1, we have Ψ̂2,ξ0(ξ) = 0,

ξ ∈ B(ξ0, 2
−n0−3) + 2πZd. This contradicts the fact that Ψ̂2,ξ0(ξ) 6= 0, ∀ξ ∈

B(ξ0, δ) + 2πZd, 0 < δ < 2δ0.
With this we complete the proof ii) ⇒ iii) and the proof of the theorem.
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Remark 3.11. Note that conditions in Theorem 3.8 and Theorem 3.10 do not
depend on p ∈ [1,∞], so we obtain the next corollary.

Corollary 3.12. Let Φ ∈ (W 1
ω)

r and p0 ∈ [1,∞].

i) If {φi(·−j) | j ∈ Z
d, 1 ≤ i ≤ r} is a p0-frame for V p0

µ (Φ), then {φi(·−j) |

j ∈ Z
d, 1 ≤ i ≤ r} is a p-frame for V p

µ (Φ), for any p ∈ [1,∞].

ii) If V p0

µ (Φ) is closed in Lp0

µ and W p0

µ , then V p
µ (Φ) is closed in Lp

µ and W p
µ ,

for any p ∈ [1,∞].

Remark 3.13. (v) ⇒ (ii) implies that {ψi(· − j) | 1 ≤ i ≤ r, j ∈ Z
d} is a dual

p-frame of {φi(·− j) | 1 ≤ i ≤ r, j ∈ Z
d}. So, the p-frame for V p

µ (Φ) is a Banach
frame (with respect to ℓpµ).

4 Connections with periodic distributions

We will use the notation V p
s instead of V p

(1+|x|2)s/2 (similarly for ℓps). Since

ℓps and V p
s are isomorphic Banach spaces for all s ≥ 0 and p ∈ [1,∞], we have

V p
s1(Φ) ⊂ V p

s2(Φ) for 0 ≤ s2 ≤ s1, p ∈ [1,∞]. We define Fréchet spaces XF,p,
p ∈ [1,∞], as XF,p =

⋂
s∈N0

V p
s (Φ). Clearly, XF,p is dense in V p

s (Φ) for all s ∈ N0.

The corresponding sequence space is QF,p =
⋂

s∈N0

ℓps, p ∈ [1,∞], which is the

space of rapidly decreasing sequences s. By Corollary 3.12 it follows that the
definition of XF,p does not depend on p ∈ [1,∞]. So we use notation XF , QF

instead of XF,p, QF,p. The set {Φ(· − k) | k ∈ Z
d} forms a F -frame for XF

since it forms a Banach frame for every space in the intersection (see [23] for
the definition).

Since the corresponding function space for s is the space of rapidly decreasing
functions S = {f | ‖f‖m = sup

n≤m
(1 + |x|2)m/2|f (n)(x)| < +∞}, and its dual is

S ′- the space of tempered distributions, we obtain that the dual space X ′
F is

isomorphic to (a complemented subspace of) S ′.
Denote by P(−π, π) the space of smooth 2π- periodic functions on R

d with
the family of norms |θ|k = sup{|θ(k)(t)| ; t ∈ (−π, π)}, k ∈ N0. It is a Fréchet
space and its dual is the space of 2π-periodic tempered distributions. We say
that T is a 2π-periodic distribution if it is a tempered distribution on R

d and
T = T (· + 2jπ), for all j ∈ Z

d. Denote by P ′(−π, π) the space of periodic

tempered distributions (see [24]). Recall that F(h) = ĥ =
∫
Rd e

−2π
√
−1t·h(t)dt

for h ∈ L1.

Theorem 4.1. Let Φ = (φ1, . . . , φr)
T ∈

⋂
s≥0

(W 1
s )

r and Ψ = (ψ1, . . . , ψr)
T be

its dual frame (according to v) of Theorem 3.10). Then

XF = F−1
( r∑

i=1

φ̂i · P(−π, π)
)
, X ′

F = F−1
( r∑

i=1

ψ̂i · P
′(−π, π)

)
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in the topological sense. Let

f =

r∑

k=1

∑

p∈Zd

ckpφk(· − p) ∈ XF and F =

r∑

i=1

∑

j∈Zd

dijψi(· − j) ∈ X ′
F .

The dual pairing is given by

〈F, f〉 =
r∑

i=1

r∑

k=1

〈
ψ̂i(ξ)φ̂k(−ξ)

∑

j∈Zd

dije
2πjξ

√
−1,

∑

p∈Zd

ckpe
−2πpξ

√
−1
〉
, (4.1)

where f =
r∑

k=1

∑
p∈Zd

ckpφk(· − p) ∈ XF and F =
r∑

i=1

∑
j∈Zd

dijψi(· − j) ∈ X ′
F .

In particular, we have

∫

Rd

ϕiψkdt =

∫

Rd

ϕ̂i(ξ)ψ̂k(−ξ)dξ = δik, 1 ≤ i, k ≤ r.

Proof. Since
∑

p∈Zd

ckpe
2π

√
−1pξ ∈ P(−π, π), we obtain the structure of f ∈ XF as

in the theorem. The same explanation works for X ′
F .

By the fact that 〈F (x), f(x)〉 = 〈F̂ (ξ), f̂(−ξ)〉, we have that (4.1) follows.
Let di0 = δik, i = 1, . . . , r, and dij = 0, j 6= 0, and, also, let ck0 = δik for

k = 1, . . . , r and ckp = 0, p 6= 0. Using that, we obtain

〈F (ξ), f(ξ)〉 =
r∑

i=1

r∑

k=1

〈ψ̂i(ξ), φ̂k(−ξ)d
i
0, c

k
0〉 =

∫

Rd

ψ̂k0
(ξ)φ̂k0

(−ξ)dξ, 1 ≤ k0 ≤ r.

On the other hand f(x) = 〈f(x), ψk0
(x)〉φk0

(x) and f = φk0
for some 1 ≤

k0 ≤ r, so we obtain 〈f, ψk0
〉 = 1. Since F = ψk0

, we get 〈F, f〉 = 〈f, ψk0
〉 = 1.

Finally, we have

∫

Rd

ϕ̂i(ξ)ψ̂k(−ξ)dξ = δik, 1 ≤ i, k ≤ r.

Let β ∈ (0, 1). Now, we consider weights µk = ek|x|
β

, k ∈ N, and the co-

rresponding spaces V p
µk
(Φ) and their intersection X

(β)
F,p =

⋂
k∈N

V p
µk
(Φ). It is a

Fréchet space not depending on p, so we use notation X
(β)
F . The correspond-

ing sequence space is s(β) =
⋂
k∈N

ℓpµk
, i.e., the space of subexponentially rapidly

decreasing sequences determining the space of periodic tempered ultradistribu-
tions via the mapping s(β) ∋ (aj)j∈Zd ↔

∑
j∈Zd

aje
jξ

√
−1 ∈ P(−π, π) (see [22]).

5 Construction of p-frames

Let θ be a smooth non negative function such that θ(x) = 1, x ∈ [−π+ε, π−ε],
for 0 < ε < 1

4 , and supp θ ⊆ [−π, π]. Let φk(x) = F−1(θ(· + kπ))(x), x ∈ R,
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k ∈ Z. We can divide every θ(· + kπ) with the sum
∑

k∈Z
θ(· + kπ) in order

to obtain the partition of unity. By the Paley-Wiener theorem, we have that
φk ∈ W 1

µ(R), k ∈ Z. We say that set {φi1 , φi2 , . . . , φir}, i1 < i2 < · · · < ir, is
a set of r successive functions if in = i1 + (n − 1), n = 2, . . . , r. Note that for
every ξ ∈ R there exist ξ0 ∈ (−π, π) and k ∈ Z such that ξ = ξ0 + kπ.

Now, we consider the following three cases.
1◦ The case of two successive functions.

If Φ = (φi, φi+1)
T , i ∈ Z, then rank[Φ̂(ξ +2jπ)j∈Z], ξ ∈ R, is not a constant

function on R. In this case, for the matrix [Φ̂(ξ+2jπ)j∈Z], we obtain the 2×∞
matrix

A(ξ0) =

[
· · · 0 αξ0

0 0 0 · · ·

· · · 0 αξ0
−1 αξ0

1 0 · · ·

]
,

which depends on ξ0 ∈ (−π, π), where αξ0
−1 = θ(ξ0 − π), αξ0

0 = θ(ξ0) and

αξ0
1 = θ(ξ0 + π).

For ξ10 = π
2 , we have α

ξ1
0

0 6= 0, α
ξ1
0

−1 6= 0, and for ξ20 = −π
2 , we have α

ξ2
0

0 6= 0,

α
ξ2
0

1 6= 0. Since rankA(ξ10) = 1 and rankA(ξ20) = 2, we conclude that for

successive functions φi, φi+1, i ∈ Z, the rank of the matrix [Φ̂(ξ + 2jπ)j∈Z] is
not a constant function on R.
2◦ The case of three successive functions.

If Φ = (φi, φi+1, φi+2)
T , i ∈ Z, then rank[Φ̂(ξ + 2jπ)j∈Z] is a constant

function on R. We have that rank[Φ̂(ξ + 2jπ)j∈Z] = 2, for all ξ ∈ R.

Indeed, the matrix [Φ̂(ξ + 2jπ)j∈Z], ξ ∈ R, is 3×∞ matrix

B(ξ0) =




· · · 0 αξ0
0 0 0 · · ·

· · · 0 αξ0
−1 αξ0

1 0 · · ·

· · · 0 0 αξ0
0 0 · · ·


 ,

which depends on ξ0 ∈ (−π, π), where αξ0
−1 = θ(ξ0 − π), αξ0

0 = θ(ξ0) and

αξ0
1 = θ(ξ0 + π). Since, θ(ξ0) 6= 0 for all ξ0 ∈ (−π, π), the matrix B(ξ0) has 2

columns with non-zero elements for all ξ0 ∈ (−π, π). So, rank[Φ̂(ξ +2jπ)j∈Z] is

a constant function on R and rank[Φ̂(ξ + 2jπ)j∈Z] = 2, for all ξ ∈ R.
3◦ The case of r > 3 successive functions.
By taking r + 1 successive functions φi, φi+1, . . . , φi+r, r > 2, we have dif-

ferent situations described in the next lemma.

Lemma 5.1. a) If Φ = (φi, φi+1, . . . , φi+r)
T , for i ∈ Z, r ∈ 2N + 1, then

rank[Φ̂(ξ + 2jπ)j∈Z] is not a constant function on R.

b) If Φ = (φi, φi+1, . . . , φi+r)
T , i ∈ Z, r ∈ 2N, then rank[Φ̂(ξ + 2jπ)j∈Z]

is a constant function on R and we have, for all ξ ∈ R, and r = 2n, n ∈ N,
rank[Φ̂(ξ + 2jπ)j∈Z] = n+ 1.

Proof. Since supports of products φ̂i1 (ξ + 2j1π)φ̂i2 (ξ + 2j2π) are non-empty if
the arguments are of the form ξ − π, ξ, ξ + π, modulo 2jπ, j ∈ Z, we have that
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only blocks with elements
[
θ(ξ) θ(ξ + 2π)
θ(ξ − π) θ(ξ + π)

]
or

[
θ(ξ − π) θ(ξ + π)
θ(ξ − 2π) θ(ξ)

]
,

can determine the rank of the matrix [Φ̂(ξ + 2jπ)j∈Z]. For any other choice of
2× 2 matrix, we get determinant equal 0.

(a) Let Φ = (φi, φi+1, . . . , φi+(2n−1))
T , n ∈ N.

For the matrix [Φ̂(ξ + 2jπ)j∈Z], we obtain the r ×∞ matrix

Ar(ξ0) =




· · · αξ0
0 0 0 0 · · · 0 0 · · ·

· · · αξ0
−1 αξ0

1 0 0 · · · 0 0 · · ·

· · · 0 αξ0
0 0 0 · · · 0 0 · · ·

· · · 0 αξ0
−1 αξ0

1 0 · · · 0 0 · · ·

· · · 0 0 αξ0
0 0 · · · 0 0 · · ·

...
...

...
...

... · · ·
...

...
...

· · · 0 0 0 0 · · · αξ0
0 0 · · ·

· · · 0 0 0 0 · · · αξ0
−1 αξ0

1 · · ·




,

where αξ0
−1 = θ(ξ0 − π), αξ0

0 = θ(ξ0) and α
ξ0
1 = θ(ξ0 + π), ξ0 ∈ (−π, π).

For ξ10 = π
2 , we have α

ξ1
0

0 6= 0, α
ξ1
0

−1 6= 0, and for ξ20 = −π
2 , we obtain α

ξ2
0

0 6= 0,

α
ξ2
0

1 6= 0. Since rankAr(ξ
1
0) = n and rankAr(ξ

2
0) = n+ 1, we conclude that for

even number of successive functions φi, φi+1, . . . , φi+(2n−1), i ∈ Z, n ∈ N, the

rank of the matrix [Φ̂(ξ + 2jπ)j∈Z] is not a constant function on R.
(b) Let Φ = (φi, φi+1, . . . , φi+2n)

T , i ∈ Z, n ∈ N. The matrix

[Φ̂(ξ + 2jπ)j∈Z] =




· · · 0 αξ0
0 0 0 0 · · · 0 0 · · ·

· · · 0 αξ0
−1 αξ0

1 0 0 · · · 0 0 · · ·

· · · 0 0 αξ0
0 0 0 · · · 0 0 · · ·

· · · 0 0 αξ0
−1 αξ0

1 0 · · · 0 0 · · ·
...

...
...

...
... · · ·

...
...

...

· · · 0 0 0 0 0 · · · αξ0
−1 αξ0

1 · · ·

· · · 0 0 0 0 0 · · · 0 αξ0
0 · · ·




,

has the constant rank on R. Indeed, since αξ0
0 6= 0 for all ξ0 ∈ (−π, π), the

matrix [Φ̂(ξ + 2jπ)j∈Z] has n+ 1 columns with non-zero elements for all ξ ∈ R

and rank[Φ̂(ξ + 2jπ)j∈Z] = n+ 1, for all ξ ∈ R.

As a consequence of Corollary 3.10 and Lemma 5.1, 1◦ we have the next
result.

Theorem 5.2. Let Φ = (φi, φi+1, . . . , φi+2n)
T , for i ∈ Z, n ∈ N. Then V p

µ (Φ)
is closed in Lp

µ, for any p ∈ [1,∞], and {φi+s(· − j) | j ∈ Z, 0 ≤ s ≤ 2n} is a
p-frame for V p

µ (Φ) for any p ∈ [1,∞].

13



Remark 5.3. In this way we obtain the sequence of closed spaces V p
µ (φ0, φ1, φ2),

V p
µ (φ0, φ1, φ2, φ3, φ4), V

p
µ (φ0, φ2, . . . , φ6), etc. We also conclude that spaces

generated with even numbers of successive functions, for example V p
µ (φ0, φ1),

V p
µ (φ0, φ1, . . . , φ5), are not closed subspaces of Lp

µ.

Theorem 5.4. Let Φ = (φk1
, φk2

, . . . , φkr )
T , k1 < k2 < · · · < kr, r ∈ N,

k1, k2, . . . , kr ∈ Z, and V p
µ,k1,k2,...,kr

= V p
µ (Φ). We consider the following cases.

i) ki+1 − ki > 1, i = 1, . . . , r − 1;

ii) If for some i0 ∈ {1, 2, . . . , r} holds ki0+1 − ki0 = 1, then there exists
n ∈ N, 2 ≤ 2n ≤ r, such that ki0 +2, ki0 +3,. . . , ki0 +2n are elements of
the set {k1, . . . , kr}.

In these cases the following statements hold.

1◦ rank[Φ̂(ξ + 2jπ)j∈Z] is a constant function for all ξ ∈ R.

2◦ V p
µ (Φ) is closed in Lp

µ for any p ∈ [1,∞].

3◦ {φki(· − j) | j ∈ Z, 1 ≤ i ≤ r} is a p-frame for V p
µ (Φ) for any p ∈ [1,∞].

Remark 5.5. (1) We refer to [4] and [26] for the γ-dense set X = {xj | j ∈ J}.
Let φk(x) = F−1(θ(· − kπ))(x), x ∈ R. Following the notation of [26], we
put ψxj = φxj where {xj | j ∈ J} is γ-dense set determined by f ∈ V 2(φ) =
V 2(F−1(θ)). Checking the proofs of Theorems 3.1, 3.2 and 4.1 in [26], we obtain
the same conclusions as in these theorems. These theorems show the conditions
and explicit Cp and cp such that the inequality

cp‖f‖Lp
µ
≤
(∑

j∈J

|〈f, ψxj 〉µ(xj)|
p
)1/p

≤ Cp‖f‖Lp
µ

holds. This inequality guarantee the feasibility of a stable and continuous re-
construction algorithm in the signal spaces V p

µ (Φ).

(2) Since the spectrum of the Gram matrix [Φ̂, Φ̂](ξ), for Φ defined in The-
orem 5.4, is bounded and bounded away from zero (see [8]), then the family
{Φ(· − j) | j ∈ Z} forms a p-Riesz basis for V p

µ (Φ).
(3) For the appropriate choice of function Φ, for example Φ defined in The-

orem 5.4, the associated Gram matrix satisfies a suitable Munckenhoupt A2

condition (see [21]), so the system {Φ(· − j) | j ∈ Z} is stable in L2
µ(R).

(4) Frames of the above type may be useful in applications since they satisfy
assumptions of Theorem 3.1 and Theorem 3.2 in [5]. They show that error
analysis for sampling and reconstruction can be tolerated, or that the sampling
and reconstruction problem in shift-invariant space is robust with respect to
appropriate set of functions φk1

, . . . , φkr .
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