
3464 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 58, NO. 12, DECEMBER 2011

Multiscale - Patient-Specific Artery and
Atherogenesis Models

P. Siogkas, A. Sakellarios, T. P. Exarchos, Member, IEEE, L. Athanasiou, E. Karvounis, K. Stefanou, E. Fotiou,
D. I. Fotiadis*, Senior Member, IEEE, K. K. Naka, L. K. Michalis, N. Filipovic, and O. Parodi

Abstract—In this work, we present a platform for the develop-
ment of multiscale patient-specific artery and atherogenesis mod-
els. The platform, called ARTool, integrates technologies of 3-D
image reconstruction from various image modalities, blood flow
and biological models of mass transfer, plaque characterization,
and plaque growth. Patient images are acquired for the develop-
ment of the 3-D model of the patient specific arteries. Then, blood
flow is modeled within the arterial models for the calculation of the
wall shear stress distribution (WSS). WSS is combined with other
patient-specific parameters for the development of the plaque pro-
gression models. Real-time simulation can be performed for same
cases in grid environment. The platform is evaluated using both
animal and human data.

Index Terms—3-D image reconstruction, atherosclerosis, blood
flow dynamics, plaque progression.

I. INTRODUCTION

CARDIOVASCULAR diseases are the leading cause of
death in western societies. More specifically, the most

prevalent of cardiovascular diseases is considered to be
atherosclerosis. Atherosclerosis is an inflammatory disease,
which is described by the accumulation of cell debri, fatty in-
gredients such as cholesterol, fibrous tissue, calcium, and white
blood cells on the arterial walls. This biological process results
to the formation of atheromatic plaque and the deterioration
of the elasticity of the arterial wall. Atheromatic plaque is in-
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creased over time and causes the narrowing of arteries, obstruct-
ing thus blood flow. Plaque progression is directly affected by
mechanical, biochemical, and biological factors. Researchers
made some early attempts to understand this process with the
use of in vitro experiments. Recent advances in both computa-
tional fluid dynamics (CFD) and in medical imaging techniques
have contributed to the modeling of the formation and progres-
sion of atheromatic plaque. Data obtained by imaging modali-
ties, such as intravascular ultrasound (IVUS) and angiography,
magnetic resonance imaging (MRI), and computed tomography
(CT) are considered to be fundamental in arterial modeling.
Bourantas et al. [1] used data fusion of IVUS and angiography
images to reconstruct coronary arteries in 3-D. Yang et al. [2]
utilized CT angiography images to reconstruct the left and right
coronary arteries of human subjects. Tang et al. [3] generated a
3-D model based on MR images incorporating multicomponent
plaque formations. In a later study by the same group [4], 3-D
carotid models reconstructed from MRI data were used to cor-
relate carotid plaque progression with flow shear stress. MRI
data were used by Steinman et al. [5] for the reconstruction
of carotid artery bifurcations. The resulting 3-D models of the
aforementioned methods have been used to simulate blood flow
and draw conclusions about the effect of shear stress distribution
on plaque progression. The endothelial function is primarily af-
fected by blood flow, which, in turn, promotes atherosclerosis.
Curvatures and bifurcations in the arterial tree create complex
flows and are consequently more prone to plaque development.
Compliant unrealistic arterial models were used by Canic et
al. [6] to perform blood flow simulations. Blood flow was mod-
eled using the Navier – Stokes equations whereas the material of
the arterial wall was considered as linear viscoelastic. The me-
chanical properties of the arterial wall are an unresolved issue
due to the lack of in vivo data. Several models have been used
in literature to describe the arterial wall. In [7] a comparative
study on the modeling of arterial mechanics is presented.

Regarding models for mass transport and plaque progression,
several studies have been proposed to model the mass trans-
port and endothelial permeability in arteries. The most com-
mon used conditions for the endothelial permeability are the
Kedem-Katchalsky equations, which describe the permeability
in biological membranes. Complex transport models in arteries
consider the arterial wall as multilayer, consisting of more than
one layer [8]. These models are more realistic because they rep-
resent the arterial wall constituting from the endothelium, the
intima, the media, and the adventitia.

In the current work, we present a platform for the develop-
ment of multiscale patient specific atherogenesis models, called
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ARTool. The methodology integrates three levels involved in
the atherogenesis procedure, that is the anatomical model of the
arterial tree, the blood flow model and the molecular/cell model
of the arterial wall/blood composition and the biological mech-
anism involved in the generation and growth of atherosclerotic
plaque.

II. METHODS

A. 3-D Image Reconstruction

The 3-D image reconstruction software that is used within
ARTool has been developed based on recent research studies.
All algorithms have been previously validated and proven to be
effective.

The platform is able to process images from various imaging
modalities. More specifically, IVUS and bi-plane angiography
are used for the reconstruction of coronary arterial segments [1].
Two-end diastolic angiographic images are used to predict the
catheter path. The artery path is approximated using cubic B
– Splines and the catheter path is created by the intersection
of two splines. IVUS frames are collected at the peak of the R
wave.

MRI is used for the reconstruction of carotid arteries [9]. Ac-
tive contours with gradient vector flow snakes are used along
with edge-detection techniques for the estimation of the lumen
and outer wall border in time of flight (TOF) and T1 weighted
(T1W) MR images, respectively. The frame where the bifurca-
tion appears is detected and an interpolation approach is used
for the estimation of the bifurcation.

CT reconstruction is based on [10]. In the proposed approach,
the segmentation algorithm traverses the 3-D volume twice,
which is the minimum number of iterations in order to segment
objects in a 3-D volume. Details for the MRI and CT recon-
struction methods can be found in [11].

B. Blood Flow and Biological Process Modeling

ARTool offers the capability to perform blood flow simula-
tions under the assumption of either rigid or deformable walls re-
garding the 3-D models, using the finite element method (FEM).
Fluid structure interaction (FSI) models are implemented using
the loose coupling method to solve the appropriate equations.
The arterial walls are considered to be either elastic or hypere-
lastic and their distal ends are fixed to prevent motion of those
regions.

Wall shear stress (WSS) as well as low density lipoprotein
(LDL) distribution are calculated in order to reveal areas of
high risk of plaque initiation or progression. Fluid shear stress
in our model is used for the plaque initiation and position at
the wall for higher LDL penetration. Blood flow in the lumen
domain, which is considerd as a 3-D fluid flow, is modeled by the
Navier-Strokes equations, together with the continuity equation
for incompressible fluid

−μ∇2ul + ρ (ul · ∇)ul + ∇pl = 0 (1)

∇ · ul = 0 (2)

where ul is the blood velocity in lumen, pl is the pressure, μ is
the dynamic viscosity of blood, and ρ is the blood density [18].

Mass transfer in the lumen is coupled with the blood flow
and is modeled by a convection-diffusion equation, in the fluid
domain

∇ · (−Dl∇cl + clul) = 0 (3)

where cl is the solute concentration in the blood and Dl is the
solute diffusivity in the lumen. Mass transfer in the arterial wall
is coupled to the transmural flow and modeled by a convection-
diffusion-reaction equation as follows:

∇ · (−Dw∇cw + kcw uw ) = rw cw (4)

where cw is the solute concentration and Dw is the solute diffu-
sivity in the arterial wall; uw is the blood velocity in the wall,
K is the solute lag coefficient, and rw is the consumption rate
constant. The LDL transport in the lumen and in the vessel wall
are coupled by the Kedem-Katchalsky equations

Jv = Lp (Δp − σdΔπ) (5)

Js = PΔc + (1 − σf ) Jv c̄ (6)

where Lp is the hydraulic conductivity of the endothelium; Δc
is the solute concentration difference, Δp is the pressure drop,
and Δπ is the oncotic pressure difference all across the endothe-
lium; σd is the osmotic reflection coefficient, σf is the solvent
reflection coefficient, P is the solute endothelial permeability,
and c̄ is the mean endothelial concentration. The first term in
the Kedem-Katchalsky equations (P Δc) of the right hand side
(6) defines the diffusive flux across the endothelium, while the
second term (1 − σf ) Jv c̄ defines the convective flux. Only the
oncotic pressure difference Δπ is neglected in our simulations
due to the decoupling of the fluid dynamics from solute dynam-
ics. The above governing equations are transformed into an FE
system of incremental-iterative equations and solved over time
steps [12].

The atherosclerotic process starts with the accumulation of
LDL in the intima, where part of them are oxidized and become
pathological. In order to remove the oxidized particles, circulat-
ing immune cells (e.g., monocytes) are recruited. Once in the in-
tima, the monocytes differentiate and become macrophages that
phagocyte the oxidized LDL. Fatty macrophages then transform
into foam cells. Foam cells are responsible for the growth of a
subendothelial plaque which eventually emerges in the artery
lumen. The model is a coupled fluid-intima model, since new
mass tissue is generated from the foam cells and we have the
intima volume increasing, which is fully coupled with the lumen
domain.

The inflammatory process (transformation of macrophages
into foam cells) is modeled using three additional reaction-
diffusion partial differential equations

∂tOx = d1ΔOx − k1Ox · M (7)

∂tM + div(vw M) = d2ΔM − k1Ox · M + S/(1 − S) (8)

∂tS = d3ΔS − λS + k1Ox · M + γ(Ox − Oxthr) (9)
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where Ox is the oxidized LDL in the wall, M and S are con-
centrations of macrophages and cytokines, respectively, in the
intima; d1 ,d2 ,d3 are the corresponding diffusion coefficients; λ

and γ are the degradation, and LDL oxidized detection coeffi-
cients; and vw is the inflammatory velocity of plaque growth,
which satisfies Darcy’s law and the incompressibility continuity
equation

vw −∇ · (pw ) = 0 (10)

∇vw = 0 (11)

in the wall domain. pw is the pressure in the arterial wall.
In order to follow the changes of the vessel wall geometry

during plaque growth, a 3-D mesh moving algorithm, the ar-
bitrary lagrangian eulerian (ALE) is applied. ALE formulation
is developed for mesh moving and changing of the structural
domain due to intima volume thickness and fluid domain re-
duction in time. In this way, we included both structural and
fluid domain. Macro growth is connected through (10) and (11)
and the inflammatory velocity vw of the plaque growing from
(7)–(9). Two time points were examined, one at the baseline and
the other after a period of two months of high fat diet.

C. Plaque Characterization

ARTool includes also an automated plaque characterization
application using three image modalities, IVUS, MRI, and CT.
Concerning the plaque characterization module using IVUS im-
ages, a hybrid approach is used, that is based on image filter-
ing and random forests. The classification scheme includes soft
plaques (lipid), hard plaques (calcium and fibrotic), and hard
calcified (calcium) plaques. The characterization of plaque us-
ing MRI was based on an image processing algorithm which
uses as input three different contrast weightings of MRI: T1 ,
T2 , and Proton Density (PD). The algorithm classifies: fibrous
tissue, lipid core, hemorrhages, and calcifications. Finally, the
method developed to characterize plaque formations using CT
images includes the detection and characterization of calcium
formations. The image processing technique that was developed
is based on the fact that calcium appears brighter than the lumen
in the CT.

III. RESULTS

The platform can be used for the visualization, assessment,
and prediction of the atherosclerotic plaque development. The
3-D reconstruction module gives the capability for fast and ac-
curate reconstruction of arterial segments and trees. The algo-
rithms are validated using annotated datasets by expert physi-
cians. The mean error of the lumen and media-adventitia area is
−0.63 ± 8.71% and −2.09 ± 8.61%, respectively, in the IVUS
and angiography reconstruction. In the case of the carotid artery
reconstruction using MRI the mean error is −3.21 ± 6.39% and
1.92 ± 5.88% for the lumen and outer vessel wall, respectively.
In the case of CT reconstruction, the MICCAI evaluation frame-
work [10] was employed, by measuring the number of correctly
segmented arteries. The accuracy obtained is 84.1%.

Fig. 1. Matching IVUS and histological cross-sectional geometry. Shear stress
distribution is shown along the internal arterial wall.

Fig. 2. Computer reconstruction of a cross-section of LAD at 15 mm after
bifurcation (left panel), with computed concentration of macrophages [mg/ml]
(middle panel); histological analysis (right panel) after two months of the high
fat diet.

The reconstructed arterial models are used for the simulation
of blood flow. FEM is used for calculating blood flow veloc-
ities and WSS, which are assessed to have a significant role
in plaque development. Validation in blood flow modeling is
based on Doppler or MRI data for coronary and carotid arteries,
respectively. The mean error is 4%.

Regarding the plaque progression models, we used experi-
mental data from pigs submitted to a high cholesterol diet for
two months. The lumen and the outer wall of the arteries were
reconstructed and then, matching of histological data and IVUS
slices was performed, as it is shown in Fig. 1.

The left arterior descending (LAD) was selected for this anal-
ysis. The process of matching with IVUS images was achieved
by 2-D modeling of tissue deformation for a number of cross-
sections recorded by histological analysis (four cross-sections
are shown in Fig. 1); those cross-sections are deformed until
the internal lumen circumferential lengths in IVUS images are
reached. Macrophages distribution shown in Fig. 2 corresponds
to the low WSS zone at 15 mm below LAD bifurcation from the
left circumflex artery, where the largest plaque formation was
found. The volume of plaque was obtained by matching IVUS
segmentation cross-section and histological intima thickness at
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TABLE I
VALUES FOR THE ANIMAL EXPERIMENTS

the same radial position. After 3-D reconstruction of plaque ge-
ometry, the inflammatory velocity vw from (10) and (11) was
fitted using nonlinear least square analysis for two time points,
baseline, and after two months’ high fat diet. It was assumed
that the intimal thickness corresponds to the geometrical vol-
ume change in time. The diffusion coefficients d1 , d2 , d3 for
oxidized LDL, macrophages, and cytokines as well as degrada-
tion and LDL oxidized detection coefficients λ and γ, coefficient
k1 are fitted using least square analysis [13]. The threshold for
oxidized LDL and cytokines Oxthr was assumed to be zero.
Other material parameters for the lumen are taken from litera-
ture and boundary conditions for flow and pressure are averaged
from experimental measurements for a specific pig. The fitted
numerical parameters are given in Table I.

Regarding the results of the plaque characterization, the
plaque characterization application using IVUS was tested using
40 annotated IVUS images, and resulted to 87.81% accuracy for
hard calcified plaque formations, 84.05% for soft plaque forma-
tions, and 88.32% accuracy for the hard noncalcified plaque for-
mations. The designed algorithm for characterizing the plaque
using MR images, was tested using 521 MR images (from three
sequences) annotated by experts. Statistical analysis for the lipid
component in terms of Cohen’s k and Pearson correlation coef-
ficient r resulted to k = 0.68, r = 0.95. Finally, CT plaque char-
acterization method was compared with expert annotation. The
algorithm showed high correlation and accuracy. More specif-
ically, plaque formations from ten patients were annotated by
experts. Concerning the plaque formations in coronary arteries,
statistical analysis resulted to k = 0.74, r = 0.97 while for the
carotid arteries the analysis resulted to k = 0.96, r = 0.98.

IV. DISCUSSION

A multiscale model for the biological process of plaque for-
mation and progression is presented. The model includes the
3-D reconstructed arterial model, the blood flow, the WSS dis-
tribution, the molecular/cell model of the arterial wall/blood
composition, and the biological mechanism involved in the gen-
eration and growth of atherosclerotic plaque. The governing par-
tial differential equations for plaque formation rely on the mass
balance and Darcy’s law in the domain of plaque development;
the Navier-Stokes equations and diffusion equations are used
for the LDL transport within the arterial lumen; the transport-
diffusion-reaction equations are employed for the transmural
mass transport, including the Kedem-Katchalsky equations to
couple the transmural and transport within the lumen. The wall
permeability was assumed to be a function of the wall shear
stress with lower permeability at low and oscillatory shear stress.

We describe the inflammatory process using reaction-
diffusion equations. Our model starts with passive penetration
of LDL in particular areas of the intima. We assume that once
in the intima, LDL is immediately oxidized. When the oxi-
dized LDL exceeds a threshold there is recruitment of mono-
cytes. The incoming monocytes immediately differentiate into
macrophages. Transformation of macrophages into foam cells
contribute to the recruitment of new monocytes. This yields the
secretion of a proinflammatory signal (cytokines), self-support
inflammatory reaction. Newly formed foam cells are responsible
for the local volume increase. Under a local incompressibility
assumption, when foam cells are created, the intima volume is
locally increasing. Volume change of the wall affects the fluid
lumen domain, which means that fully coupling is achieved.
The specific numerical procedures using ALE were developed
for this purpose. Our approach is concentrated on the process
on plaque initiation and intimal thickening.

Smooth muscle cells proliferation was not taken into account
in this model and will be investigated in a future study. Moreover,
we have not taken into account deformation and stress inside
the arterial wall, which is very important for the plaque rupture
and smooth muscle proliferation for plaque growing. Another
limitation of the platform is that, currently, plaque character-
ization is performed in 2-D images; however, we are in the
process of connecting the 2-D characterized images in order to
create 3-D volumes of the plaque. Then, blood flow modeling
and the subsequent plaque progression will become much more
realistic.

We examined experimental data obtained for the LAD artery
of a pig after two months’ high fat diet in order to determine ma-
terial parameters of the model. The matching between computed
plaque location and progression in time with experimental ob-
servations demonstrate a potential benefit for future prediction
of this vascular decease.
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