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In the recent work by Khatua et al. [Khatua, S.; Roy, D. R.; Bultinck, P.; 

Bhattacharjee, M.; Chattaraj, P. K. Phys. Chem. Chem. Phys. 2008, 10, 2461-2474] 

the synthesis and structure of a fac-trioxo molybdenum metalloligand and its sodium 

complex containing 1D hexagonal chains of sodium ions was reported. In the same 

paper, the aromaticity of hexagonal Na-clusters was quantified by means of the 

nucleus-independent chemical shift and electronic multicentre indices. It was shown 

that the aromaticity of hexagonal Na-clusters is of the same order as the aromaticity 

of analogous benzenoid hydrocarbons. In the present study current density maps are 

used to rationalize the aromaticity of polycyclic Na-clusters. It is shown that although 

polycyclic Na-systems sustain a diatropic ring current, the induced current density is 

several times weaker than in analogous benzenoid hydrocarbons. A detailed analysis 

indicates that the current density in hexagonal Na-systems is almost completely 

determined by four HOMO σ-electrons. 

 

 

INTRODUCTION 

 

After the discovery of the aromatic character of [Al4]
2-/[Al 4]

4- by Boldyrev et 

al.1,2 the concept of aromaticity was extended from its usual organic realm to the field 

of all-metal inorganic clusters. Compared to the aromaticity encountered in organic 

molecules, primarily being of the traditional π-type, all-metal systems can exhibit a 

multifold aromaticity3-5 and conflicting aromaticity,2,3,6-9 arising from their σ-, π-, δ-
10,11 and even φ-12 electron delocalization. Until recently, there was no report on the 
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synthesis and structural characterization of aromatic compounds containing alkali 

metal ions. Two reports13,14 dealt with the synthesis and structural characterization of 

a fac-trioxo molybdenum metalloligand and its sodium [Na2MoO3L(H2O)2]n and 

potassium complex [K2MoO3L(H2O)3]n, {L=iminodiacetate}. The analysis of the 

crystal structure of those compounds showed that the Na-complex contains linear 

chains of Na6 hexagons, whereas the K-complex contains 2D hexagonal chains. These 

distinctive features of Na- and K-complexes and their clear structural similarity with 

hydrocarbons were a motivation to investigate their aromaticity. The aromaticity of 

the polycyclic alkali clusters was previously14 quantified by means of the nucleus-

independent chemical shift (NICS)15 and electronic multicentre indices (MCI).16 It 

was shown that individual Na6 rings are considerably more aromatic than the 

corresponding K6 rings. Furthermore, according to NICS values the aromaticity of 

Na-clusters is of the same order of magnitude as the aromaticity of linear polyacenes. 

The importance of newly reported Na- and K-clusters can be viewed from 

different aspects. In recent years syntheses of 3D polymeric materials are receiving 

more and more attention due to their potential use as small molecule storage 

materials.17-19 On the other hand, both Na- and K-clusters contain all-metal rings 

stabilized with appropriate ligands, making them different from all-metal clusters 

containing ‘bare’ metal rings.1-5 The aromaticity of ‘ligand stabilized’ rings of metal 

atoms becomes a new emerging field of aromaticity. 

The problem with claims that a certain species is aromatic is that this 

conclusion may depend rather significantly on the property used to characterize 

aromaticity. As an example: a ring that exhibits bond length equalization as in 

benzene but does not sustain a ring current could be classified by some as aromatic 

but by others as not aromatic depending on the relative importance they attach to the 

property of bond lengths equalization or ring currents respectively. The same is true 

for e.g., electron delocalization and ring currents. Although one of us has previously 

shown that electron delocalization and ring currents in carbohydrates go hand in 

hand,20-23 the more general and subtle interrelationship is that a delocalized system is 

a necessary but not sufficient requirement for a ring current. In previous work on Na6 

systems, electron delocalization was gauged by the multicentre index and information 

on a ring current was obtained indirectly from NICS values. The problem with NICS, 

however, is that although usually a negative (or aromatic) NICS value reflects the 
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existence of a ring current, there is no direct way to extract and thus beyond doubt 

prove the existence of an underlying ring current. 

The direct visualization and thus proof of existence or non-existence of a ring 

current was much advanced by the work of Keith and Bader24,25 with their 

introduction of a perturbation theory based scheme for computing induced current 

density maps with the so-called continuous set of gauge transformations. This method 

is now also known as the continuous transformation of origin of current density with 

diamagnetic zero CTOCD-DZ26-28 or ipsocentric method.29-31 These methods may be 

used to give a direct visualization of the induced current density in polycyclic Na-

clusters and their analogous linear polyacenes. The significant advantage of this 

method is that the total current density is naturally partitioned into molecular-orbital 

contributions,29-31 allowing an efficient rationalization of different types of 

aromaticity (σ, π, etc.). The results obtained by analyzing the current density are 

compared with calculated NICS values. The bond cross sections of the current density 

are used to analyze the nature and patterns of the current density induced in 

polycyclic Na-clusters and their analogous hydrocarbons. This way, we aim to 

establish the nature of the aromaticity in terms of sustaining of a ring current for the 

Na-clusters. 

 

 

COMPUTATIONAL METHODS 

 

The structures of the Na4n+2 (n = 1-5) entities (Figure1) were taken from the 

experimental structural data given by Khatua et al.13,14 The molecular structures of the 

linear polyacenes C4n+2H2n+4 (n = 1-5) were optimized at the B3LYP/6-311+G* level. 

Computed Hessian matrices showed the optimized structures to correspond to minima 

on the potential energy surface. 

The current density maps presented in this paper were computed by means of 

coupled HF theory using the diamagnetic-zero variant of the continuous 

transformation of origin of current density (CTOCD-DZ) method.26-28 In this method, 

the current density at each point in the molecule is computed by choosing itself as the 

origin of vector potential, hence the alternative name ‘ipsocentric’ for the method.29-31 

The current density maps for Na4n+2 and C4n+2 H2n+4 (n = 1-5) were calculated using 

the STO-3G, 3-21G and 6-31G Gaussian basis sets and for n = 1-3 using the 6-31G* 
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basis set. LANL2DZ calculations including the LANL2DZ effective core potential 

were carried out in order to be able to reduce the impact of the core electrons. In all 

calculations a unit magnetic field perpendicular to the molecular plane was used and 

the calculated ring currents were plotted on a grid in the plane parallel to the 

molecular plane with a diatropic current represented by a counterclockwise 

circulation. 

The ring current maps for linear polyacenes were calculated 1a0 above the 

molecular plane, in accordance with the previous current maps calculations for such 

systems.29,32 

NICS15 were calculated at the HF level through the gauge-including atomic 

orbital method (GIAO).33,34 The HF-method was used in order to make more 

reasonable the comparison of NICS values and the ring current results calculated at 

the same level. NICS(0)- and NICS(1)-values were calculated using all basis sets used 

for the ring current maps calculation (STO-3G, 3-21G, 6-31G, 6-31G*, LANL2DZ). 

Also, the basis set 6-311+G* was used in order to compare the HF/6-311+G* level 

NICS with the B3LYP/6-311+G* results from the previous work.14 

The geometry optimization and calculation of NICS were done using Gaussian 

03.35 Calculations of ring currents were performed using our own Fortran routines 

requiring as input formatted checkpoint files from Gaussian 03. 

 

 

RESULTS AND DISCUSSION 

 

As mentioned above, the structures of the different polycylic Na-systems were 

taken from experimental structural data of a fac-trioxo molybdenum metalloligand 

and complexes.13,14 It should be noted that these structures do not correspond to 

minima on the potential energy surfaces so although this paper shows their aromatic 

character in the compounds mentioned, no claim is made that aromaticity is the 

fundamental reason for the planar structure they exhibit in the compounds mentioned. 

The similarity between the Na-systems and linear polyacenes is clear although the 

symmetry of the compounds is not entirely the same. The Na6 compound for example, 

in the structure it is found to have experimentally,13,14 has a D2h symmetry rather than 

the D6h symmetry typical for benzene. 
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Still, the structural similarity is sufficiently manifest to use the analogous 

linear polyacenes well-known as one of the most studied aromatic organic 

compounds36-38, as a natural reference for the polycyclic Na-systems. NICS values 

calculated at the HF level for Na4n+2 and C4n+2 H2n+4 (n = 1-5) are given in Table 1 and 

Table 2. By comparing the HF/6-311+G* with the B3LYP/6-311+G* results from Ref 

14 it can be seen that both methods give very similar results, with a small difference 

that HF values for benzenoid polyacenes are somewhat bigger than those at the 

B3LYP level. By inspection of the data from Table 1, it is revealed that NICS-values 

do not depend too much on the basis set used. In the case of benzenoid hydrocarbons 

NICS values are more sensitive on the type of basis set (Table 2). Although, the STO-

3G basis set gives the lowest NICS values for both Na-clusters and acenes, the results 

obtained using this basis set are in good qualitative agreement with the larger basis 

sets results. According to the NICS-values outer rings are less aromatic than the inner 

rings of Na-clusters. These findings are in complete analogy with the results for linear 

polyacenes, although this does not necessarily reflect larger local aromaticity in the 

inner rings. On the other hand, there is no analogy when NICS scans are in question. 

In the case of Na-clusters NICS-values monotonically become less negative as one 

moves from the molecular plane, whereas in the case of acenes NICS-values are the 

most negative at about 1 Å above the molecular plane (Figure S1). Based on the 

similar results for the NICS scan and by examining orbital contributions to MCI it 

was concluded that Na-clusters are σ-aromatic.14 

The map of the current density for the Na6-cluster calculated in the molecular 

plane using the 6-31G* basis set is presented in Figure 2a. It can be seen that there are 

strong local currents around the Na atoms, whereas other parts of the current are 

significantly weaker than the current density of benzene (Figure S5a). Analysis of the 

orbital contributions to the total current density in the Na6-clusters reveals that almost 

all significant contributions come from the circulation of 4 σ-electrons from the two 

degenerate HOMOs. This finding is analogous to the well-known model predicting 

that only 4 π-electrons significantly contribute to the total ring currents in benzenoid 

hydrocarbons.29 The current density contributions from the two degenerate HOMOs 

in the molecular plane of Na6 are shown in Figure 2b. It can be seen that the HOMO-

pair electrons in Na6 contribute clearly localized density currents rather than global 

circulations although a much weaker global current persists. 
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In order to investigate the global current density of Na-clusters, first the 

dependence of the intensity of the induced current on the distance from the plane of 

Na6-ring was examined. Figure 3 shows the maximum current density Jmax in the 

plotting plane parallel to the molecular plane as a function of the distance between 

both planes. Jmax, being the largest magnitude of current density in the plotting plane 

is a good indication of current strength. By comparing its value over a set of different 

planes parallel to the molecular plane, one can also locate the plane with the strongest 

current density. Figure 3a clearly shows that the maximum in Jmax in this plot occurs 

in the molecular plane. However, the observed current density and thus also the value 

of Jmax is the result of a sum of all orbital contributions to the current density and its 

topology and features must not necessarily be due to the valence orbitals only. In 

order to establish the influence of the core electrons, the current densities were also 

calculated with the LANL2DZ basis set containing an effective core potential for the 

Na atoms, and thus removing the contributions from the Na core electrons. From 

Figure 3b it can be seen that Jmax is very strongly reduced in the molecular plane if we 

remove the core electrons. It can be observed that using the LANL2DZ basis set with 

the effective core potential causes the HOMOs to do not use basis functions 

corresponding to core electrons. Moreover, we also see that according to Figure 3b, 

Jmax decreases fairly slowly upon increasing the distance between the plotting plane 

and the molecular plane. By comparison between Jmax values in Figures 3a and 3b, it 

was established that for all electron basis sets, the most suitable plane is that at 1 a0 

above the molecular plane. The Jmax values at 1 a0 above the molecular plane for an 

all-electron basis set tend to be very comparable to what is obtained in the plane when 

using the LANL2DZ basis set with effective core potential. The current density maps, 

with the LANL2DZ basis set and effective core potential, computed in the molecular 

plane and 1a0 above the molecular plane are practically identical (Figures S8 and S9) 

allowing us to also use the plane 1a0 above the molecular plane for this level of 

theory. It should be noted that despite working in a plane above the molecular plane, 

the fact that there is only a slow decay of Jmax as shown in Figure 3b still suggests that 

the current density is of σ type. The reason is that the current density of σ type does 

not necessarily have to drop rapidly which is in sharp contrast to a π type current 

density that for symmetry reasons has a node in the molecular plane. 
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The maps of the total current density and contributions from the HOMO pair 

in the Na6-cluster calculated 1a0 above the molecular plane using the 6-31G* basis set 

are presented in Figure S7. From Figure S7, it can be seen that the induced ring 

current density is substantially weaker than in benzene (Figure S5a). With Jmax = 

0.014 a.u. (calculated at the CTOCD-DZ/HF/6-31G* level) the current density in the 

Na6-cluster is about seven times weaker than in benzene with Jmax = 0.098 a.u. 

(calculated at the CTOCD-DZ/HF/6-31G*//B3LYP/6-311+G* level). In order to 

make the current density map from Figure S7 more convenient for further discussion 

the arrow size was increased by a factor 3 as in Figure 2c and 2d. These enlarged 

arrows are used to show the current density maps of Na-clusters in the rest of the 

paper. The ring current maps for the series of Na4n+2, (n=1,5) calculated using the 6-

31G basis set are given in Figure 4. Analogous maps for C4n+2H2n+4, (n=1,5) are given 

in Figure S4. All other maps of current density calculated with different basis sets are 

given in Figures S8-S12. By comparing these ring current maps it is obvious that the 

STO-3G basis set gives current density somewhat stronger than the current density 

calculated with the other basis sets. With Jmax = 0.032 a.u. calculated for the Na6-

cluster using the STO-3G basis set, the current density obtained by using this basis set 

is about two times stronger than the corresponding current density calculated with the 

6-31G* basis set (Jmax = 0.014 a.u.). However, the current density maps calculated 

with the STO-3G basis set are in good qualitative agreement with the larger basis set 

maps. This finding reinforces the well-established opinion that most often sufficiently 

accurate current density maps can be obtained using modest basis sets.32,39 

From Figure 4 two characteristic features are immediately recognized. First, 

all examined Na-clusters sustain a diatropic ring current. Second, the induced current 

density of the Na-systems is several times weaker than in the analogous linear 

polyacenes. The plots from Figure 4 reveal further analogies between the Na-clusters 

and hydrocarbons. It can be seen that the intensity of the total ring current density 

increases from the outer to the central ring of the Na-clusters, whereas the induced 

current in the terminal rings decreases with the size of the given Na-system. The last 

two observations are completely in agreement with the predictions made by NICS-

values (Table 1 and 2). 

The Na6 system, although computed here in the experimental D2h symmetry 

rather than the D6h symmetry known for benzene, can be regarded as an experimental 

realization of a pseudo-π system. It has been known for a long time that a hexagonal 
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arrangement of six hydrogen atoms bears a large similarity to benzene.40 This has led 

to the practice of removing hydrogen atoms in (large) hydrocarbons and replacing the 

carbon atoms by hydrogen atoms. For the resulting structure, the current density is 

computed using the STO-3G basis set. Experience has shown that this leads to very 

similar current density maps as when using the true molecule41,42 and even shows a 

remarkable numerical similarity for current densities but also NICS values and 

Multicenter Indices.21-23,43,44 The Na6 system thus can be considered to be a true 

experimental realization of a pseudo-π system. 

In the ipsocentric method, one can show that the current density in a molecule 

depends on three key elements. In the perturbation theory ansatz, one needs to have 

an appropriate combination of orbital symmetries with the symmetry corresponding to 

the angular and linear momentum operators. Next, the combination of an occupied 

and virtual orbital must be characterized by a sufficiently small energy difference. 

Finally, there should be sufficient overlap between the occupied and virtual orbital 

involved taking into account the appropriate operator (see Ref. 29 for details). In case 

of benzene the main contributor to current density comes from transitions between the 

HOMO and LUMO levels. In the Na6 system with the reduced symmetry a somewhat 

similar picture appears where transitions from the HOMO level to the near-degenerate 

LUMO level again play the most important role and all significant contributions 

reflect a diatropic transition. The transition diagram is shown in Figure 5. 

Using the current density profiles Fliegl et al.45 pointed out that the 

widespread notion that the ring current in benzene is transported by π-electrons on 

both sides of the ring should be checked and reexamined. In a recent study, Monaco et 

al.46 have used orbital contributions to the bond current strength47 to give a 

quantitative proof that the ring current of benzene is transported by π-electrons on 

both sides of the ring. Similarly, these conclusions can be obtained by analyzing the 

results shown in Figure 6. The results presented in Figure 6 are obtained at the 

CTOCD-DZ/HF/6-31G*//B3LYP/6-311+G* level. The plot 6b1 shows the total 

current density cross sections for a plane perpendicular to the C1-C2 bond of benzene 

and passing through the bond centre. For details see the Figure 6 caption. The cross 

sections of the current density shown in Figure 6 are in good agreement with the cross 

sections reported in Ref. 45 and 46. Figure 6 also shows the dependence of the y-

component of the current density vector (Jy) on the distance from the ring centre along 

the x-axes in the plane of the benzene ring (Figure 6b2) and 1a0 above the benzene 
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ring (Figure 6b3). Similar plots are made for the σ current density (Figure 6c1, 6c2 and 

6c3) and for the π current density (Figure 6d1, 6d2 and 6d3). Analyzing the plots 6b2 

and 6b3 one sees that inside the benzene ring there is a paratropic current which 

comes completely from the σ-electrons. By comparing the values of Jy from the plots 

6c2 and 6c3 it can be seen that the paratropic current inside the benzene ring decreases 

along the z-direction, i.e. along the direction perpendicular to the molecular plane. It 

is also obvious that the current density in the molecular plane comes completely from 

σ-electrons (plots 6b2 and 6d2). From the plots 6b3, 6c3 and 6d3 one can see that there 

is a diatropic current on the outside of the molecular ring. A diatropic current in the 

molecular plane comes from the σ-electrons. When moving perpendicularly from the 

plane of benzene molecule, the contributions from σ-orbitals get smaller whereas the 

contributions from π-orbitals get bigger and dominant. 

An analogous analysis of the CTOCD-DZ/HF/6-31G* current cross sections 

for the Na6-complex is presented in Figure 7. The plot 7b1 shows the total current 

density cross sections for a plane perpendicular to the Na1-Na2 bond of Na6 and 

passing through the bond centre (see Figure 7a). The plots 7b2 and 7b3 show the 

dependence of the Jy on the distance from the ring centre along the x-axes in the plane 

of the Na6 ring and 1a0 above the Na6 ring. The analogous plots for the HOMO pair 

contributions to the total current density are shown in the plots 7c1, 7c2 and 7c3. It is 

obvious that the results for the total current and the results for the HOMO pair current 

are almost identical, indicating that the contributions from the HOMO pair to the total 

current density dominate the total current. These findings support the model that only 

the four HOMO σ-electrons determine almost completely the total current density. By 

comparing the plots 7b2 and 7b3 it can be seen that the intensity of the current density 

decreases with increasing the distance from the molecular plane, which is a typical 

feature of the σ-electrons currents. Also, it is obvious that the magnitudes of the 

current density in the molecular plane and 1a0 above the molecular plane are very 

similar. Figure 7 also shows that a diatropic current is transported on the both sides of 

the Na6 ring by the σ-electron circulation. Plots 7d1, 7d2 and 7d3 show analogous 

results for the current density coming from the HOMO-2 (see Figure S13). One can 

see that the HOMO-2 contributions to the total current density are an order of 

magnitude smaller than the corresponding contributions of the HOMO pair and that 

the HOMO-2 contributions are not relevant in the analysis of the total current. 
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CONCLUSIONS 

 

In the present study CTOCD-DZ current density maps were used to rationalize 

the aromaticity of polycyclic Na-clusters and analogous linear polyacenes. The NICS 

values were also calculated with the HF method through the gauge-including atomic 

orbital method (GIAO). According to NICS values Na-clusters have a similar degree 

of the aromaticity as the analogous acenes. On the other hand, it was shown that 

although polycyclic Na-systems sustain a diatropic magnetic-field induced ring 

current, the induced current density is several times weaker that in analogous 

benzenoid hydrocarbons. This finding is in agreement with the results obtained using 

the multicentre indices  predicting that the aromaticity of individual Na6-rings is 

smaller than the aromaticity of analogous rings in benzenoid hydrocarbons.14 A 

detailed analysis indicates that the current density in sodium hexagonal systems is 

almost completely determined by four HOMO σ-electrons. 
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Basis set 

I II III IV V VI 

R
in

g 
A 

NICS(0) -8.86 -8.37 -8.33 -8.47 -8.38 -8.69 
NICS(1) -7.54 -7.37 -7.35 -7.49 -7.44 -7.50 

B 
NICS(0) -8.43 -9.65 -9.64 -9.62 -9.53 -9.91 
NICS(1) -7.25 -8.42 -8.43 -8.43 -8.38 -8.52 

C 
NICS(0) -7.70 -9.25 -9.29 -9.24 -9.14 -9.54 
NICS(1) -6.64 -8.05 -8.10 -8.08 -8.01 -8.19 

D 
NICS(0) -9.14 -11.39 -11.39 -11.31 -11.20 -11.34 
NICS(1) -7.94 -9.89 -9.90 -9.86 -9.80 -9.76 

E 
NICS(0) -7.20 -8.19 -8.28 -8.21 -8.10 -8.58 
NICS(1) -6.20 -7.10 -7.19 -7.15 -7.07 -7.33 

F 
NICS(0) -8.91 -11.71 -11.73 -11.65 -11.53 -11.68 
NICS(1) -7.74 -10.17 -10.20 -10.15 -10.08 -10.05 

G 
NICS(0) -6.90 -6.57 -6.78 -6.68 -6.55 -7.07 
NICS(1) -5.94 -5.65 -5.85 -5.78 -5.68 -5.99 

H 
NICS(0) -8.58 -11.15 -11.20 -11.09 -10.97 -11.21 
NICS(1) -7.46 -9.65 -9.71 -9.64 -9.57 -9.61 

I 
NICS(0) -9.01 -13.07 -13.05 -12.97 -12.86 -12.97 
NICS(1) -7.84 -11.38 -11.37 -11.33 -11.28 -11.19 

 

Table 1. NICS(0) and NICS(1) values of individual rings of Na-clusters depicted in 

Figure 1. NICS values were calculated at HF level using the STO-3G (I), 3-21G(II), 

6-31G(III), 6-31G*(IV), 6-311+G*(V) basis set and the LANL2DZ basis set with 

effective core potential (VI). 
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 Basis set 
I II III IV V VI 

R
in

g 
A 

NICS(0) -9.09 -9.96 -8.58 -11.53 -9.49 -7.88 
NICS(1) -10.20 -12.56 -11.98 -12.82 -11.25 -11.21 

B 
NICS(0) -8.18 -10.03 -8.66 -11.33 -9.60 -7.80 
NICS(1) -9.83 -12.63 -12.00 -12.88 -11.46 -10.95 

C 
NICS(0) -6.71 -8.61 -7.23 -9.53 -7.92 -6.49 
NICS(1) -8.71 -11.34 -10.70 -11.42 -10.08 -9.74 

D 
NICS(0) -12.02 -14.37 -13.16 -16.03 -14.56 -12.20 
NICS(1) -12.21 -15.81 -15.09 -16.14 -14.82 -13.75 

E 
NICS(0) -5.54 -7.31 -5.93 -7.94 -6.41 -5.25 
NICS(1) -7.80 -10.20 -9.54 -10.09 -8.79 -8.62 

F 
NICS(0) -9.88 -12.84 -11.45 -14.16 -12.83 -10.21 
NICS(1) -11.34 -14.99 -14.33 -15.42 -14.14 -12.90 

G 
NICS(0) -4.73 -6.34 -4.94 -6.72 -5.17 -4.29 
NICS(1) -7.16 -9.34 -8.66 -9.07 -7.76 -7.76 

H 
NICS(0) -9.13 -12.03 -10.64 -13.14 -11.82 -9.43 
NICS(1) -10.75 -14.28 -13.60 -14.57 -13.29 -12.20 

I 
NICS(0) -10.73 -13.91 -12.53 -15.38 -14.17 -11.26 
NICS(1) -12.00 -15.91 -15.25 -16.49 -15.26 -13.80 

 

Table 2. NICS(0) and NICS(1) values of individual rings of linear polyacenes 

analogous to Na-clusters depicted in Figure 1. NICS values were calculated at HF 

level using the STO-3G (I), 3-21G(II), 6-31G(III), 6-31G*(IV), 6-311+G*(V) basis 

set and the LANL2DZ basis set with effective core potential (VI). Geometries were 

optimized at the B3LYP/6-311+G* level. 
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Figure 1. The structures of Na-clusters: a) Na6 b) Na10 c) Na14 d) Na18 e) Na22. The 

geometries of Na-clusters were taken from the experimental crystallographic data.14 

The capital letters denote individual six-membered rings used for the NICS 

calculations. 
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Figure 2. Current density maps of Na6 calculated using the 6-31G* basis set: a) total 

current density in the molecular plane, b) HOMO pair contributions to the total 

current density presented in a), c) total current density 1 a0 above the molecular plane 

with the arrows three times enlarged, d) HOMO pair contributions to the total current 

density presented in c). 
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Figure 3. The dependence of the maximal value of the current density in the plotting 

plane (Jmax) on the height above the molecular plane of Na6. Current densities were 

calculated by means of the CTOCD-DZ method using: a) 6-31G* and b) LANL2DZ 

basis set with the LANL2DZ effective core potential. The values of Jmax are in a.u. 

whereas the distances are in Å. 
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Figure 4. Total current density maps calculated using the 6-31G basis set: a) Na6 b) 

Na10 c) Na14 d) Na18 e) Na22. For details see the text. 
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Figure 5. Orbital energy level diagram for: a) benzene and b) Na6. The energies (in 

a.u.) are obtained at the HF/6-31G* level. Only the transitions that significantly 

contribute to the induced current density are shown. Black arrows represent 

translational (diatropic) transitions and the width of arrows reflects the relative 

magnitude of the contribution of the underlined transition (for details see Ref. 29). 
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Figure 6. a) The coordinate system used in this figure; the benzene ring lies in the xy-

plane; the ring centre is at the origin; the centre of the C1-C2 bond is at (x,y) = (1.21, 

0.00) Å. The current density cross sections calculated at the CTOCD-DZ/HF/6-

31G*//B3LYP/6-311+G* level for a plane perpendicular to the C1-C2 bond in 

benzene and passing through the bond centre: b1) all electrons, c1) σ-electrons, d1) π-

electrons. Dashed lines show the modulus of the current density. The symbol ● 

denotes the position of the centre of the C1-C2 bond in the xz-plane. The dependence 

of the Jy component of the total current density vector calculated in the molecular 

plane on the distance from the centre of the benzene ring along the x- axis: b2) all 

electrons, c2) σ-electrons and d2) π-electrons. The dependence of the Jy component of 

the total current density calculated 1a0 above the molecular plane on the distance from 

the centre of the benzene ring along the x-axis: b3) all electrons, c3) σ-electrons and 
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d3) π-electrons. Positive (negative) values of Jy correspond to a diatropic (paratropic) 

current. The values of Jy are in a.u,. whereas the distances are in Å. 
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Figure 7. a) The coordinate system used in this figure; the Na6 ring lies in the xy-

plane; the ring centre is at the origin; the centre of the Na1-Na2 bond is at (x,y) = 

(2.72, 0.00) Å. The current density cross sections calculated at the CTOCD-DZ/HF/6-

31G* level for a plane perpendicular to the Na1-Na2 bond in Na6 and passing through 

the bond centre: b1) all electrons, c1) HOMO pair, d1) HOMO-2. Dashed lines show 

the modulus of the current density. The symbol ○ denotes the position of the centre of 

the Na1-Na2 bond in the xz-plane. The dependence of the Jy component of the current 

density vector in the molecular plane on the distance from the centre of Na6 ring along 

the x- axis: b2) all electrons, c2) HOMO pair and d2) HOMO-2. The dependence of the 

Jy component of the total current density 1a0 above the molecular plane on the 
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distance from the centre of Na6 ring along the x- axis: b3) all electrons, c3) HOMO 

pair and d3) HOMO-2. See Figure 6 caption for other details. 
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Table 1. NICS(0) and NICS(1) values of individual rings of Na-clusters depicted in 

Figure 1. NICS values were calculated at HF level using the STO-3G (I), 3-21G(II), 

6-31G(III), 6-31G*(IV), 6-311+G*(V) basis set and the LANL2DZ basis set with 

effective core potential (VI). 

 

Table 2. NICS(0) and NICS(1) values of individual rings of linear polyacenes 

analogous to Na-clusters depicted in Figure 1. NICS values were calculated at HF 

level using the STO-3G (I), 3-21G(II), 6-31G(III), 6-31G*(IV), 6-311+G*(V) basis 

set and the LANL2DZ basis set with effective core potential (VI). Geometries were 

optimized at the B3LYP/6-311+G* level. 

 

Figure 1. The structures of Na-clusters: a) Na6 b) Na10 c) Na14 d) Na18 e) Na22. The 

geometries of Na-clusters were taken from the experimental crystallographic data.14 

The capital letters denote individual six-membered rings used for the NICS 

calculations. 

 

Figure 2. Current density maps of Na6 calculated using the 6-31G* basis set: a) total 

current density in the molecular plane, b) HOMO pair contributions to the total 

current density presented in a), c) total current density 1 a0 above the molecular plane 

with the arrows three times enlarged, d) HOMO pair contributions to the total current 

density presented in c). 

 

Figure 3. The dependence of the maximal value of the current density in the plotting 

plane (Jmax) on the height above the molecular plane of Na6. Current densities were 

calculated by means of the CTOCD-DZ method using: a) 6-31G* and b) LANL2DZ 

basis set with the LANL2DZ effective core potential. The values of Jmax are in a.u. 

whereas the distances are in Å. 

 

Figure 4. Total current density maps calculated using the 6-31G basis set: a) Na6 b) 

Na10 c) Na14 d) Na18 e) Na22. For details see the text. 
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Figure 5. Orbital energy level diagram for: a) benzene and b) Na6. The energies (in 

a.u.) are obtained at the HF/6-31G* level. Only the transitions that significantly 

contribute to the induced current density are shown. Black arrows represent 

translational (diatropic) transitions and the width of arrows reflects the relative 

magnitude of the contribution of the underlined transition (for details see Ref. 29). 

 

Figure 6. a) The coordinate system used in this figure; the benzene ring lies in the xy-

plane; the ring centre is at the origin; the centre of the C1-C2 bond is at (x,y) = (1.21, 

0.00) Å. The current density cross sections calculated at the CTOCD-DZ/HF/6-

31G*//B3LYP/6-311+G* level for a plane perpendicular to the C1-C2 bond in 

benzene and passing through the bond centre: b1) all electrons, c1) σ-electrons, d1) π-

electrons. Dashed lines show the modulus of the current density. The symbol ● 

denotes the position of the centre of the C1-C2 bond in the xz-plane. The dependence 

of the Jy component of the total current density vector calculated in the molecular 

plane on the distance from the centre of the benzene ring along the x- axis: b2) all 

electrons, c2) σ-electrons and d2) π-electrons. The dependence of the Jy component of 

the total current density calculated 1a0 above the molecular plane on the distance from 

the centre of the benzene ring along the x-axis: b3) all electrons, c3) σ-electrons and 

d3) π-electrons. Positive (negative) values of Jy correspond to a diatropic (paratropic) 

current. The values of Jy are in a.u,. whereas the distances are in Å. 

 

Figure 7. a) The coordinate system used in this figure; the Na6 ring lies in the xy-

plane; the ring centre is at the origin; the centre of the Na1-Na2 bond is at (x,y) = 

(2.72, 0.00) Å. The current density cross sections calculated at the CTOCD-DZ/HF/6-

31G* level for a plane perpendicular to the Na1-Na2 bond in Na6 and passing through 

the bond centre: b1) all electrons, c1) HOMO pair, d1) HOMO-2. Dashed lines show 

the modulus of the current density. The symbol ○ denotes the position of the centre of 

the Na1-Na2 bond in the xz-plane. The dependence of the Jy component of the current 

density vector in the molecular plane on the distance from the centre of Na6 ring along 

the x- axis: b2) all electrons, c2) HOMO pair and d2) HOMO-2. The dependence of the 

Jy component of the total current density 1a0 above the molecular plane on the 

distance from the centre of Na6 ring along the x- axis: b3) all electrons, c3) HOMO 

pair and d3) HOMO-2. See Figure 6 caption for other details. 

 


