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ABSTRACT METRIC SPACES AND
CARISTI-NGUYEN-TYPE THEOREMS

Zoran Kadelburg, Stojan Radenovi¢ and Suzana Simié

Abstract

In this paper we prove cone metric versions of common fixed point the-
orems for two and four mappings with the Caristi-Nguyen-type contractive
conditions. Also, sufficient conditions for two or four mappings to have no
common periodic points are deduced. Examples are given to distinguish these
results from the known ones and to show that certain conditions cannot be
omitted.

1 Introduction

As a generalization of metric spaces, cone metric spaces play an important role in
Fixed Point Theory, Computer Science and some other research areas as well as
in Functional Analysis. Huang and Zhang reintroduced in [8] such spaces replac-
ing the set of real numbers with an ordered Banach space as the codomain for a
metric (we note that such spaces were known earlier under the name of K-metric
spaces, see [15]). They also discussed some properties of convergence of sequences
and proved fixed point theorems for contractive mappings on cone metric spaces.
Recently, some common fixed point theorems were proved for maps on cone metric
spaces (see, e.g., [1]-[3], [9]-[11] and references therein).

Banach Contraction Principle in metric spaces has been generalized and ex-
tended in various ways. One of the important extensions was given by J. Caristi [5]
who used contractivity condition of the form

d(z, Tx) < ¢(x) — ¢(Tx),

where ¢ was a lower semicontinuous function from the given complete metric space
to the set of nonnegative real numbers. Nguyen H.D. in [14] made a further modifi-
cation, considering a pair of (orbitally) continuous self-mappings S and T" and using
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the combined Banach-Caristi condition

N
d(Sz,Ty) < Md(z,y) + Y (d:(x) — ¢:(S2) + ¢i(y) — 6:(Ty)),

i=1

where {¢; | i =1,2,..., N} was a set of real functions on the given metric space. He
also proved a version of this result for four mappings (the case first considered by
B. Fisher [7]). M. Alimohammady et al. [3] adapted the first of mentioned results
to the setting of cone metric spaces.

In this paper we prove cone metric versions of common fixed point theorems for
two and four mappings with the Caristi-Nguyen-type contractive conditions. Also,
sufficient conditions for two or four mappings to have no common periodic points
are deduced. Examples are given to distinguish these results from the known ones
and to show that certain conditions cannot be omitted.

2 Preliminaries

We repeat some definitions and results from [8], which will be needed in the sequel.

Let E be a real Banach space with 6 as the zero element and let P be a subset
of E with the interior int P. The subset P is called a cone if: (a) P is closed,
nonempty and P # {0}; (b) a,b € R, a,b > 0, and =,y € P imply az + by € P;
(¢) PN (—P) = {0}. For the given cone P, a partial ordering < with respect to P
is introduced in the following way: = < y if and only if y — x € P. We write x < y
to indicate that x <y, but z # y. If y — x € int P, we write z < y. If int P # (),
the cone P is called solid.

The cone P is called normal if there is a number K > 0, such that, for all
x,y € E, 0 <z < yimplies ||z|| < K||y|| or, equivalently, if (Vn) z,, < y, =< z,, and
lim,, o @, = limy,— o0 2, = @ imply lim, o yn, = x (for details see, e.g., [4, 6]).

The cone P is called regular if every nondecreasing sequence in E which is order-
bounded from above is convergent, i.e., if whenever {z,} is a sequence in E such
that 1 S 29 2 --- <z, <X --- 2y for some y € E, then there exists x € F such
that z,, — , n — co. Every regular cone is normal [6].

Let X be a nonempty set. Suppose that the mapping d : X x X — E satisfies:
(dy) 0 = d(z,y) for all x,y € X and d(x,y) = 0 if and only if z = y; (d2) d(z,y) =
d(y,z) for all z,y € X; (ds) d(z,y) = d(z,2) +d(z,y) for all z,y,z € X. Then d is
called a cone metric on X and (X, d) is called a cone metric space [8]. The concept
of a cone metric space is obviously more general than that of a metric space.

Let (X, d) be a cone metric space, and {z,} a sequence in X. We say that {x,}
converges to x € X if for every ¢ € F with 6 < ¢, there exists ng € N such that
d(zp,x) < c for all n > ng. We write lim, o 2, = , or 2, — x, n — oco. If
for every c in F with 6 < ¢, there exists ng € N such that d(z,,z,,) < c for all
n,m > ng, then {z,} is called a Cauchy sequence in X. If every Cauchy sequence
is convergent in X, then X is called a complete cone metric space (see [8]).

Let us recall that if P is a normal (a fortiori regular) cone then a sequence {z,, }
in X converges to x € X if and only if d(x,,xz) — 0, n — oo, i.e., if and only if
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ld(xn,z)|| — 0, n — oo. Further, {z,} in X is a Cauchy sequence if and only
if d(xn,zm) — 0, n,m — oo [8, Lemma 1], i.e., if and only if ||d(xy,zm)| — O,
n,Mm — 0.

A pair of self-mappings (F,G) on a cone metric space (X, d) is said to be com-
patible (see [10]) if for arbitrary sequence {z,} in X such that lim, . Fz, =
lim, .o Gz, =t € X, and for arbitrary ¢ € int P, there exists ng € N such that
d(FGxyp,GFx,) < ¢ whenever n > ng. In the case of a normal cone P, we have
that a pair (F,G) is compatible in the frame of cone metric spaces if and only if it
is compatible in the sense of usual metric spaces (see, e.g., [13]).

3 Common fixed points of four mappings

Theorem 3.1. Let (X,d) be a complete cone metric space over a regular cone P
and let F,G,S and T be four continuous self-mappings on X. Suppose that

1) SX ¢ GX, TX C FX,
2) (S, F) and (T,G) are two pairs of compatible mappings,

3) there exists a finite collection of functions {¢; : X — P |i=1,2,...,N} such
that the inequality

N
d(Sz,Ty) X Md(Fz,Gy) + > (:i(Fz) — 6:(Sz) + 6:(Gy) — 6:(Ty)) (3.1)
i=1

holds for some A € [0,1) and all x,y € X. Then F,G,S and T have a unique
common fized point.

Proof. Let g € X be chosen arbitrarily. There exists x1 € X such that Gz, =
Szo = 29 (because SX C GX). Since TX C FX, there exists o € X such
that Fxg = Txy = z;. We continue in this manner. In general, zo,+1 € X
is chosen such that Gxg,11 = Sxa, = 22, and xg,49 € X is chosen such that
Fropyo =Txon41 = 22n41-

First we prove that {z,},>1 is a Cauchy sequence. We have the following two
possible cases:

e For n =24, { € N, we have

d(220, 22041) = d(Swoar, Txo041) = Ad(Faar, Gragyr)

N
+ ) (¢i(Frar) — ¢i(Swar) + ¢i(Graesr) — ¢i(Twa041))

i=1

N
= Ad(2z21-1, z21) Z Gi(220-1) — i(220) + ¢i(220) — Pi(22041))

N
= Ad(z21-1, 221) Z $i(220-1) — bi(22041))-
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eForn=20+1,/¢eN, we have

d(z2041,22042) = d(Sxort2, Tropr1) = M(Fxopy2, Gopyr)

N
+) (¢i(Frarsa) — ¢i(STarsa) + 6i(Grarsr) — ¢i(T2011))

=1

= Md(22041, 221) + Y (di(22041) — Pi22042) + Di(220) — Pi22041))

] =

.
Il
-

= (21, 22141) + Y (9i(220) — i(22042))-

-

Il
—

K3
From these two inequalities, one can deduce that, for each n > 1,

n

N n
d(22¢, 22041) Z za-1,220) + 3 Y (Bi(z20-1) — i22011))  (3.2)

=1 i=1 ¢=1

[M]=

~
Il
—_

and

n

N n
d(z2041, 22042) 2 A ) d(220, 22041) + Z Z ¢i(220) — di(z2042)).  (3.3)
1 = i=1 (=1

From (3.2) and (3.3), we have

NIE

o~
Il

2n+1 2n

N
Z d(zj, zj4+1) = )\Zd(zj, Zj1) + Z(@(h) — ¢i(22n11) + Bi(22) — Gi(22n12))-

Jj=2 Jj=1

Thus
2n+1 2n-+1
D Az, 241) 2 d(z1,22) + A Y d(z),2541)
j=1 j=1
N
+ ) (¢i(21) = dizant1) + Gil22) — Gi(22n42))
i—1
2n+1 N
2d(z1,22) + A Z d(zj, 2j+1) + Z(@(zﬂ + pi(z2)).
j=1 i—1
Since A € [0,1), we obtain that for all n > 1
2n+1 1 N
Z d(zj,ZjJrl) j ﬁd(zl,ZQ g (151 Zl +¢z 22)) (34)

The right-hand side of the inequality (3.4) is an element of P. Therefore, the
sequence {Z?:l d(zj,zj+1)}n>1 is an increasing sequence which is bounded from
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above in the regular cone P, so { Z?Zl d(zj, Zj+1)}n>1 is convergent, i.e., the series

> ey d(24, 2j41) converges. Hence, for n < m,

m—1

d(zn, 2m) = Z d(zj,zj4+1) — 0, n — oo.

j=n

This gives that {z,},>1 is a Cauchy sequence in X.
Completeness of X implies the existence of z € X such that lim, .. z, = z,
ie.,

lim Gropy1 = hm Sxo, = hrn Fzxo, = hm Txopy1 = 2.

n—oo

Let us prove that Sz = F'z.
Using the continuity and compatibility of S and F', we have that

0 =2 d(Sz, Fz) X d(Sz,SFxa,) + d(SFxay,, FSxa,) + d(FSzapn, Fz) — 0, n— oo,

wherefrom it follows that d(Sz, Fz) =0, i.e., Sz = Fz.

By the same arguments as above (for mappings T and @), we conclude that
d(Tz,Gz) = 0, i.e., Tz = Gz. Let us prove that Sz = Tz. If we suppose that
0 < d(Sz,Tz), then, for A € [0,1),

'MZ

d(52,Tz) X M(Fz,Gz) + Y (¢(Fz) — ¢;(S2) + ¢(Gz) — ¢;(T'z))

=1

N
= \d(Sz,Tz) + Z(¢,(sz) $i(S2) + ¢s(T2) — ¢4(T2))
= Ad(Sz,Tz) < _(Sz,Tz),

which is not possible. Thus, d(Sz,Tz) = 6, so Sz = Tz. We can conclude that z is
a coincidence point of S, F,T and G.
Let us prove now that z is a fixed point for S. Using (3.1), we have

d(Sz, zan41) = d(Sz, TacgnH) =< Ad(Fz,Gxony1)
+Z@m $:(52) + ¢i(Gran41) — 6i(TT2n41))
=< )\d(SZ G$2n+1)

+Z@& — $i(52) + ¢i(Gazns1) — 6i(Tr2041))

N

= Ad(Sz, zop) + Z(¢z(22n) - ¢i(22n+1))7

i=1
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and

d(Sz, zan) = d(T'z, z2n) = d(Sx2n, Tz) 2 AMd(Fxay, G2)

N
+ Z((bi(FJJzn) — ¢i(Sz2,) + ¢5(G2) — ¢;(T2))

N

< Ad(Sz, z2n-1) + Z(@(szl) — ¢i(22n))'

i=1

From these inequalities, one can deduce that, for each n > 1,

Zd (Sz, z) Z (Sz, 2 +ZZ $i(25) — di(241)),
j=0

=1 5=0

SO

n N
(I=X Z (Sz,2;) 2 Ad(Sz, 2o +Z¢, 20)-

=1
Since A € [0,1), we obtam that
n \ 1 N
)< — i(20)- .
;d(Sz,zJ) < (%, 20) + 5 _)\;éz(zo) (3.5)

The right-hand side of the previous inequality is an element of P. Therefore, the
sequence {Z;;l d(Sz,zj)}n>1 is an increasing sequence which is bounded from
above in the regular cone P. So {Z;—;l d(Sz,zj)}n21 is convergent, i.e., the
series Z]oil d(Sz,z;) converges. Hence, d(Sz,z,) — 6, n — oo and, therefore,
lim,, . 2z, = Sz. Since the limit of a convergent sequence in a cone metric space is
unique, and lim,, .~ 2z, = z, we have Sz = z. We can conclude that z is a common
fixed point of S, T, F and G.

In order to prove uniqueness of the fixed point, we suppose that z # z is another
fixed point for S, T, F and G. From (3.1),

N

d(z,2) = d(5z,T7Z) 2 Md(Fz,Gz) + Z(éi)i(FZ) — ¢i(S2) + ¢i(GZ) — ¢4(T7))

i=1
N
d(z,2) + Y _(8i(2) — ¢i(2) + 6i() — 6:(2))
i=1
= Md(z,2),
where A € [0,1). It follows that d(z,2) =0, i.e., z = Z. O

Remark 3.2. The sequence {z,}, constructed in the previous proof, is usually called
a Jungck sequence for the mappings S, T, F, G. It follows from the previous proof
that each Jungck sequence of the given mappings converges to the same point, the
unique common fixed point of these mappings.
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The following result is an immediate consequence of Theorem 3.1.

Corollary 3.3. Let (X,d) be a complete cone metric space over a regular cone P
and let F,G,S and T be four continuous self-mappings on X. Suppose that

1) SXCGX, TX C FX,
2) (S, F) and (T,G) are two pairs of compatible mappings,
3) there exists ¢ : X — P such that the inequality
d(Sz,Ty) 2 ¢(Fz) — ¢(Sz) + ¢(Gy) — #(Ty)
holds for all x,y € X.
Then F,G,S and T have a unique common fized point.

Remark 3.4. For mappings S,T : X — X on a cone metric space (X,d), it is
said that they satisfy Caristi-type condition with respect to a finite collection of
functions {¢; : X — P|i=1,2,...,N}if for all z,y € X, the inequality

2

d(Sz, Ty) = Z — ¢i(Sz) + ¢i(y) — ¢:(Ty))

=1

holds. In the case when i = 1, we have the condition

d(Sz,Ty) =X ¢(x) — (Sx) + ¢(y) — ¢(Ty).

By taking F' = G = Ix in the condition 3) of Corollary 3.3, we obtain that the
mappings S and T satisfy Caristi-type condition in a complete cone metric space
(X,d) over a regular cone P.
Remark 3.5. By taking F' = G = Iy in the condition 3) of Theorem 3.1, we obtain
the contractive condition of [3, Theorem 2.3] (which is a combination of Banach
and Caristi-type condition). Hence our Theorem 3.1 generalizes [3, Theorem 2.3].
By taking F = R and P = [0, +00) in Theorem 3.1, we obtain [14, Theorem 2.1]
as a consequence.
We also note that a Caristy-type fixed point result was proved in [2] as well, but
with the stronger condition of the so called strong minihedralness of the cone.

The following example shows that mappings may not satisfy conditions of Fisher’s
theorem for four mappings [7], but still satisfy all conditions of Theorem 3.1. Hence,
this theorem is a proper generalization of Fisher’s theorem.

Example 3.6. Let X = {1,2,3}. Consider the mappings

1 2 3 1 2 3 1 2 3 1 2 3
T'<131>’S'<11 1)’F'(133>’G'(132>'
Let the metric d : X x X — R be defined in the following way

d(172):5a d(2a3):37 d(371):7a d(x,y):d(y,x), d(xvx):()a
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for all x,y € X. It is easy to see that SX = {1}, TX = {1,3}, FX = {1,3},
GX ={1,2,3} and SX C FX, TX C GX. Since d(52,T72) =d(1,3) =7>0=
d(3,3) = d(F2,G2), i.e., d(S2,T2) > d(F2,G2), these mappings do not satisfy the
conditions of Fisher’s theorem.

Take the function ¢ : (1) i ;’

the contractive condition of Theorem 3.1. The inequalities

>. We will show that S, T, F and G satisfy

(1) d(S1,T1) < Ad(F1,G1) + ¢(1) = ¢(S1) + ¢(1) — ¢(T'1);
(2) d(S1,T2) < Xd(F1,G2) + ¢(1) — ¢(S1) 4+ ¢(2) — ¢(T2);
(3) d(52,T1) < M(F2,G1) 4+ ¢(2) — ¢(52) + ¢(1) — &(T1);
(4) d(S2,T2) < M(F2,G2) + ¢(2) — ¢(S2) + ¢(2) — ¢(T2),

hold for A > 2. Indeed,

(1) d(1,1) < Ad(1,1) + 0 — 0+ 0 — 0 holds for all A € [0,1);
(2) d(1,3) < Ad(1,3) 40— 0+ ¢(2) — ¢(3), i.e., T < TA+5 is true for A > Z;
(3) d(1,1) < Ad(3,3) +7—0+7—2 holds for all A € [0,1);
(4) d(1,3) < Ad(3,3) +7—0+7—2 holds for all A € [0,1).

Thus, for % < A < 1 all the conditions of Theorem 3.1 are satisfied. We obtain
that S, T, F and G have a unique fixed point z = 1.

Using the previous construction, one can easily obtain a respective example
for a cone metric space over a regular cone P. Indeed, take E = R?, P =
{(z,y) | = > 0,y > 0}, and the cone metric d. : X x X — P defined by
dc(a,b) = (2d(a,b),3d(a,b)) for a,b € X, where d(a,b) is defined above. All conclu-
sions for the mappings S, T, F' and G remain the same.

Remark 3.7. Using Example 3.6, we have
d(S1,T2) =d(1,3) =7 > 5= ¢(1) — ¢(S1) + ¢(2) — &(T2).

and the mappings S and T do not satisfy the Caristi-type condition, either.

The following example shows the importance of the condition 2) from Theo-
rem 3.1, i.e., that there are mappings S, T, F' and G which are not compatible in
pairs, and satisfy all other conditions of Theorem 3.1 including the contractive one,
but do not have a common fixed point. Hence, when generalizing [14, Theorem 1.2]
to the case of four functions, additional condition of compatibility is necessary.

Example 3.8. Let X =R, E = R? and P = {(z,y) | * > 0,y > 0}. We define
d: XxX — FEasd(z,y) = (Jt—yl,0). It is easy to see that (X, d) is a cone metric
space and P is a regular cone. Now, we consider the mappings S, T, F,G : X — X
defined by Sz =Tx =2 —x, Fxr = Gr =2x, z € X. Let ¢ : X — P be defined by
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¢(z) = (1,1), for all € X, and let A = 1. We have that Sz = Fz if and only if

T = % € X. Since FS% = F% = % and SF% = S% = %, then S, F' are not weakly

compatible mappings, and therefore they are not compatible. It is easy to check
that all the conditions of Theorem 3.1, except 2), are satisfied. In particular, for all
x,y € X, the contractive condition

d(Sz, Ty) = M(Fz,Gy) + ¢(Fx) — ¢(Sz) + ¢(Gy) — ¢(T'y)
holds, but these mappings do not have a common fixed point.

In the following theorem we use another version of the Caristi-type condition.
It is an extension of [14, Theorem 2.2] to the cone metric setting.

Theorem 3.9. Let (X,d) be a complete cone metric space over a regular cone P,
let S, F' be compatible continuous self-mappings on X such that SX C FX, and let
¢: X — P. Let z € X satisfy

d(Sz,z) R Md(Fx,z) + ¢(Fz) — ¢(Sx)
for some A € [0,1) and all x € X. Then z is a common fized point of S and F.

Proof. Let us choose xy € X arbitrarily. Since SX C F X, there exists ; € X such
that F'z1 = Sxg. Also, there exists zo € X such that Fzo = Sz;. We continue in
this manner. In general, x,, € X is chosen such that Fz, = Sx,_1.

Since, for any k € N, we have

d(Fzxy,z) =d(Szk_1,2) S M(Fxp_1,2) + ¢(Frr_1) — ¢(Fag),

we obtain

n

Y d(Fag,2) A d(Far-1,2) + ) (¢(Fap-1) — o(Far)),
k=1 k=1

k=1

A 1
Zd Fay, 2) = 7= d(Fo, 2) + 7—¢(Fzo).

By the same arguments as in the proof of Theorem 3.1, we have that d(Fz,,z) — 0
as n — oo, that is, lim,, . Fx, = z.
Using the continuity and the compatibility of S and F, we have

0 = d(Sz, Fz) <d(Sz,SFxy,) + d(SFxy, FSxy,) + d(F Sy, Fz) — 0, n— oo,

wherefrom it follows that d(Sz, Fz) =0, i.e., Sz = Fz.
Let us, now, prove that z is a fixed point of S. Suppose that Sz # z. Then,

d(Sz,2) X M(Fz,z) + ¢(Fz) — $(Sz) = Ad(Sz,2) < d(Sz, z),

which gives a contradiction. Therefore, Sz = Fz = z.
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In order to prove uniqueness, we suppose that z # z is a fixed point of S and
F. Then
d(z1,2z) =d(Sz1,2) R M(Fz1,2) + ¢(Fz1) — ¢(Sz1)
= Ad(z1,2) + ¢(z1) — d(21) = Md(z1, 2) < d(z1, 2).

Hence, z; = z, which completes the proof of the theorem. O

4 Mappings having no periodic points

In what follows, we will denote the set of all fixed points of a self-mapping T by
O(T),ie,®(T)={z€ X |Tz=z}
Remark 4.1. It can be easily verified that if z is a fixed point of T, then z is also a
fixed point of 7", n = 1,2, ..., that is, ®(T) C ®(T™) if ®(T') # (. The converse
statement is not valid. Indeed, the mapping T : R — R defined by Tx = % — x has
a unique fixed point, i.e., ®(T) = {1}, but every = € R is a fixed point for T2. If
O(T)=P(T™),n=1,2,..., then we say that T has no periodic points (for details
see [12]).

In what follows we will obtain conditions for two, resp. four mappings to have
no common periodic points, i.e., that

O(T) N ®(S) = B(T™) N D(S™), or
O(T) N &(S) N &(G) N B(F) = B(T™) N D(S™) N B(G™) N B(F™)

holds for each n, respectively.

Theorem 4.2. Let (X, d) be a complete cone metric space over a reqular cone P
and let {¢p; : X — P |i=1,2,...,N} be a finite collection of functions. Suppose
that S and T are two continuous self-mappings on X and that there exists A € [0,1)
such that

N

d(Sz, Ty) < Md(z,y) + Y (d:(z) — :(Sz) + ¢i(y) — :(Ty))

i=1
for allz,y € X. Then ®(S)N®(T) = ®(S™)N®(T™) for each n € N,

Proof. Taking F = G = Ix in Theorem 3.1, we obtain that ®(S) N ®(T) = {z}.
Since ®(S) N ®(T) C (S™) N P(T™), we only have to prove that ®(S) N &(T) D
O(S™)N®(T™). Let v € &(S™) NP(T™) for some fixed n > 1. In order to prove
that v = z, we suppose that v # z. We have

d(z,v) = d(S”z,T"v) = d(SS"_lz,TT"_lv)
= /\d(Snflz,T”*IU)

’ i@’i(s"‘lz) — 64557 712) + (T M) — (T )
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= \d(SS" 22, TT" *v)

+ zNj(@- (5" 12) = 6:(S"2) + ¢ (T 1) — (™))
< AZd(?—%,T”—%)

+ i(qﬁi (8"712) — i (S™2) 4+ ¢ (T '0) — ¢;(T")

+ ¢ (Sn_QZ) — ¢ (Sn_lz> + ¢ (Tn_Q’U) _ & (Tn_lv))
= X2d(9S" Pz, TT" %)

N
+ Z(@- (577%2) = ¢i(2) + ¢ (T 2v) — ¢i(v))

N

N(z,0) + Y (¢i(2) — 6il2) + ¢i(v) — 6i(v)) = \"d(z,v).

i=1

Thus, d(z,v) < A"d(z,v). Since A" € [0,1), we have that d(z,v) = 0, i.e., z = v,
which is a contradiction.
Hence, ®(S) N &(T) = &(S™) N O(T™). O

Theorem 4.3. Let (X,d) be a complete cone metric space over a regular cone P,
and ¢ : X — P. Suppose that S and F are commuting continuous self-mappings on
X such that SX C FX. Let z € X satisfy

d(Sz,z) R Md(Fz,z) + ¢(Fz) — ¢(Sz)
for some A € [0,1) and all x € X. Then ®(S)NP(F) = &(S™) N O(F™).

Proof. From Theorem 3.9, we obtain that ®(S) N ®(F) = {z}. We already have
O(S)NP(F) C ¢(S™)NP(F™) (see Remark 4.1). Let v € &(S™)NP(F™), for some
fixed n > 1, and suppose that v # z. We have
d(v,z) = d(S”v, z) = d(SS"ilv, z)
= )\d(FSnflv, z) + d)(FS"*lv) — qﬁ(SS"*lv)
= A(SS"2Fv, 2) + ¢(S" " Fv) — ¢(v)
<N (FS"2Fv,2) + ¢(FS" ?Fv) — ¢(S" ' Fv) 4+ ¢(S" ' Fv) — ¢(v)
= N2d(SS" TP F?v, 2) + ¢(S"T2F?v) — ¢(v)

SN d(F™v, z) + ¢(F™v) — ¢(v) = N"d(v,2) < d(v, 2),
which is a contradiction. Thus, ®(S) N ®(F) = ®(S™) N P(F™). O
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Theorem 4.4. Let S, T, F and G be four mappings satisfying all the conditions of
Theorem 3.1. If {S, F} and {T, G} are commuting pairs of mappings, then

B(S) N O(T) N ®(F) N B(G) = B(S™) N B(T™) N B(F™) N B(G™).

Proof. From Theorem 3.1, we have that ®(S)N®(T)NO(F) N &(G) = {z}. It is
obvious that ®(S)N®(T)NP(F)NP(G) C &(S™*)NO(T™) NP(F™) N P(G™). Let
v e PSM)NS(T™)NP(F™)ND(G™), for some fixed n > 1, and suppose that v # z.
Using the commutativity of the corresponding pairs of mappings, we have
d(z,v) = d(S"z,T”v) = d(SS"‘lz,TT"_lv)
2 A(FS™ 12, GT" ')

N
+ Z(@ (FS"'2) — ¢:(SS"'2) + ¢ (GT" ') — ¢ (TT™ 1))
i=1

=Ad(S" ' Fz, T ' Go)
N
+ 2 ($i(8"TIF2) = 4i(8"2) + & (T Gv) = 64(T"))
i=1

N
= Ad(S5" 22, TT"*Go) + Y (¢:(T" ' Gv) — i(v))

i=1
N
I NA(FS"22,GT"2Go) + > (i (T Gv) — i (v) + ¢:(FS"%2)
i=1
— ¢i(S"'2) + ¢ (GT"2Gv) — ¢ (T" ' Gv))
N
2d(S"TPF2, T2 GP0) + 3 (63 (T72G0) — ¢4(v)

i=1

N
= N2d(SS" 22, TT"2G%0) + D (6:(T"2G%v) — ¢4(v))
i=1

N
=< Ad(z,G™) + Z(@(G%) — ¢i(v)) = A\"d(2,v) < d(2,v),

which is a contradiction.
Hence, ®(S)N®(T)NP(F)NP(G) = &(S™)NO(T™) NO(F™) N O(G™). O
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