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UPPER BOUND FOR THE ENERGY OF STRONGLY

CONNECTED DIGRAPHS

Singaraj K. Ayyaswamy, Selvaraj Balachandran, Ivan Gutman

The energy of a digraph D is defined as E(D) =

n∑

i=1

|Re(zi)|, where z1,

z2, . . . , zn are the (possibly complex) eigenvalues of D. We show that if D

is a strongly connected digraph on n vertices, a arcs, and c2 closed walks

of length two, such that Re(z1) ≥ (a + c2)/(2n) ≥ 1, then E(D) ≤ n(1 +
√
n )/2. Equality holds if and only if D is a directed strongly regular graph

with parameters

(
n,

n +
√
n

2
,
3n + 2

√
n

8
,
n+ 2

√
n

8
,
n+ 2

√
n

8

)
. This bound

extends to digraphs an earlier result [J. H. Koolen, V. Moulton: Maximal

energy graphs. Adv. Appl. Math., 26 (2001), 47–52], obtained for simple

graphs.

1. INTRODUCTION

The energy E(G) of a graph G is defined to be the sum of absolute values of
its eigenvalues [5]. For surveys of the mathematical properties of graph energy see
[6, 7]. In the seminal work [8], Koolen and Moulton proved that for all graphs
with n vertices and m edges,

(a) E(G) ≤
2m

n
+

√

√

√

√(n− 1)

[

2m−

(

2m

n

)2
]

and

(b) E(G) ≤
n

2
(
√
n+ 1)
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and that equality in (b) is attained if and only if G is a strongly regular graph with
parameters

(

n,
n+

√
n

2
,
n+ 2

√
n

4
,
n+ 2

√
n

4

)

.

In this work we show how these results can be extended to digraphs.

A digraph (or directed graph) D consists of a nonempty finite set V of ele-
ments called vertices and a finite set A of ordered pairs of distinct vertices called
arcs. Two vertices are said to be adjacent if they are connected by an arc. If there
is an arc from vertex u to vertex v, we indicate this by writing uv . The in-degree
(resp. out-degree) of a vertex v, denoted by d−(v) (resp d+(v)) is the number of
arcs of the form uv (resp. vu), where u ∈ V.

A digraph D is symmetric if for any uv ∈ A also vu ∈ A, where u, v ∈ V. A
one-to-one correspondence between simple graphs and symmetric digraphs is given

by G  
↔

G, where
↔

G has the same vertex set as the graph G and each edge uv of
G is replaced by a pair of symmetric arcs uv and vu. Under this correspondence, a
graph can be identified with a symmetric digraph.

The adjacency matrix A of a digraph D whose vertex set is {v1, v2, . . . , vn}
is the n× n matrix whose (i, j)-entry is defined as

aij =

{

1 if vivj ∈ A,

0 otherwise.

The characteristic polynomial |z I − A| of the adjacency matrix A of D is said
to be the characteristic polynomial of D, and it is denoted by φD = φD(z). The
eigenvalues z1, z2, . . . , zn of A are the eigenvalues of D and form its spectrum [1,
2]. In the general case, these eigenvalues are complex. They will be labeled so that
Re(z1) ≥ Re(z2) ≥ · · · ≥ Re(zn). According to Rada [9], the energy of a digraph

D is defined as E(D) =
n∑

i=1

|Re(zi)|.

In this paper we first show that if D is a strongly connected digraph on n

vertices, with a arcs and c2 closed walks of length 2, such that

(c) Re(z1) ≥
a+ c2

2n
≥ 1

then the inequality

(d) E(D) ≤
a+ c2

2n
+

√

√

√

√(n− 1)

[

a+ c2

2
−

(

a+ c2

2n

)2
]

holds. Moreover, equality holds if and only if D is either a direct sum of n/2 copies

of
↔

K2,
↔

Kn (or) a non-complete directed strongly regular graph with two non-trivial

eigenvalues both with absolute value

√

a+ c2

2
−
(

a+ c2

2n

)2

/ (n− 1). Evidently, (d)
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is just the digraph–version of inequality (a). Then in a manner analogous to ob-
taining (b) from (a) (see [8]), we obtain from (d) a sharp upper bound for the
energy of strongly connected digraphs in terms of the number of vertices.

2. DEFINITIONS AND KNOWN RESULTS

Let D be a digraph with eigenvalues z1, z2, . . . , zn. It is well known that the

number cs of closed walks in D of length s is equal to
n∑

i=1

(zi)
s. Let thus c2 be the

number of closed walks in D of length 2, and let
↔

Kn be the symmetric digraph on
n vertices. With this notation we have:

Lemma 2.1. [9] Let D be a digraph with n vertices and a arcs. If z1, z2, . . . , zn
are the eigenvalues of D, then

1.
n∑

i=1

(Re(zi))
2 −

n∑

i=1

(Im(zi))
2 = c2.

2.
n∑

i=1

(Re(zi))
2 +

n∑

i=1

(Im(zi))
2 ≤ a.

Theorem 2.2. [9] Let D be a digraph with n vertices and a arcs. Then E(D) ≤
√

n(a+ c2)/2. Equality holds if and only if D is the direct sum of n/2 copies of
↔

K2, the directed cycle of length 2.

Suppose that D is a directed graph on n vertices with adjacency matrix A.

We say that D is a directed strongly regular graph with parameters n, k, t, λ, µ if
0 < t < k, and A satisfies the following matrix equations:

JA = AJ = kJ,(2)

A2 = tI + λA+ µ (J − I −A) ,(3)

where J is the matrix whose all elements are equal to unity.

Lemma 2.3. [3] For a directed strongly regular graph with parameters (n, k, t, λ, µ) ,

0 ≤ λ < t < k,(4)

0 < µ ≤ t < k.(5)

Theorem 2.4. [3] Let A be the adjacency matrix of a directed strongly regular
graph with parameters (n, k, t, λ, µ) . Then A has integer eigenvalues θ0 = k, θ1 =
λ− µ + δ

2
, θ2 =

λ− µ − δ

2
with multiplicities m0 = 1, m1 = −

k + θ2 (n− 1)

θ1 − θ2
and

m2 =
k + θ1 (n− 1)

θ1 − θ2
respectively, provided δ =

√

(µ− λ)
2
+ 4 (t− µ) is a positive

integer.
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Theorem 2.5. [11] A symmetric regular connected digraph D without loops and
multiple arcs of out-degree (or) in-degree k is strongly regular and not a union of
complete digraphs if and only if it has exactly three distinct eigenvalues λ(1) =
k, λ(2), λ(3).

Theorem 2.6. [4] Let D be a digraph with n vertices and c2 closed walks of length

2. Then Re(z1) ≥ c2/n. Equality holds if and only if D ∼=
↔

G+ {possibly some arcs
that do not belong to cycles}, where G is a (c2/n)-regular graph.

Theorem 2.7. [4] Let D be a digraph with n vertices, a arcs and c2 closed walks
of length 2. Then

E (D) ≤
c2

n
+

√

(n− 1)

[

a−
(c2

n

)2
]

.

Equality holds if and only if D is the empty digraph (i.e., the graph consisting of n

isolated vertices) or D ∼=
↔

G, where

1. G ∼=
n

2
K2 ;

2. G ∼= Kn ;

3. G is a non-complete connected strongly regular graph with two non-trivial
eigenvalues both with absolute value

√

[a− (c2/n)2] /(n− 1).

Theorem 2.8. [4] Let D be a digraph with n vertices and symmetry index s (where
s = a− c2). Then

e(D) ≤
n

2

(

1 +

√

n+
4s

n

)

.

Equality holds if and only if D ∼=
↔

G, where G is a strongly regular graph with

parameters

(

n,
n+

√
n

2
,
n+ 2

√
n

4
,
n+ 2

√
n

4

)

.

3. ESTIMATING THE ENERGY OF STRONGLY CONNECTED
DIGRAPHS

Theorem 3.1. If D is a strongly connected digraph on n vertices and a arcs, such
that Re(z1) ≥ (a+ c2)/(2n) ≥ 1, then the inequality

(6) E(D) ≤
a+ c2

2n
+

√

√

√

√(n− 1)

[

a+ c2

2
−

(

a+ c2

2n

)2
]

holds. Moreover, equality holds in (6) if and only if D is either a direct sum of n/2

copies of
↔

K2 or
↔

Kn or is a non-complete directed symmetric strongly regular graph
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with two non-trivial eigenvalues both with absolute value

√

√

√

√a+ c2

2
−

(
a+ c2

2n

)2

n− 1
.

Proof. Let z1, z2, . . . , zn be the eigenvalues of D such that Re(z1) ≥ Re(z2) ≥
· · · ≥ Re(zn). By Lemma 2.1,

n
∑

i=1

(Re zi)
2
= c2 +

n
∑

i=1

(Im zi)
2
,

n
∑

i=2

(Re zi)
2 = c2 +

n
∑

i=1

(Im zi)
2 − (Re z1)

2
.

Using this together with the Cauchy–Schwarz inequality, applied to the (n − 1)-
dimensional vectors (|Re(z2)|, |Re(z3)|, . . . , |Re(zn)|) and (1, 1, . . . , 1), and bearing
in mind Lemma 2.1, we obtain the inequality,

n
∑

i=2

|Re(zi)| ≤

√

√

√

√(n− 1)

n
∑

i=2

|Re(zi)|2 ≤

√

√

√

√(n− 1)

[

c2 +

n
∑

i=1

Im(zi)2 −Re(z1)2

]

≤

√

(n− 1)

[

c2 +
a− c2

2
−Re(z1)2

]

=

√

(n− 1)

[

a+ c2

2
−Re(z1)2

]

.

Hence,

(7) E(D) ≤ Re(z1) +

√

(n− 1)

[

a+ c2

2
−Re(z1)2

]

.

Now, the function F (x) := x+

√

(n− 1)

(

(a+ c2)

2
− x2

)

decreases on the interval

√

a+ c2

2n
< x ≤

√

a+ c2

2
. From

a+ c2

2n
≥ 1 follows that

√

a+ c2

2n
≤

a+ c2

2n
≤ Re(z1)

must hold. Therefore F (Re z1) ≤ F
(

a+ c2

2n

)

must hold as well. Hence,

E(D) ≤
a+ c2

2n
+

√

√

√

√(n− 1)

[

a+ c2

2
−

(

a+ c2

2n

)2
]

.

For the second part, clearly D =
n/2

⊕
i=1

↔

K2 has n vertices and n arcs and n
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closed walks of length 2. Consequently,

E

(

n/2

⊕
i=1

↔

K2

)

= n = 1 +

√

(n− 1)
2
=

n+ n

2n
+

√

√

√

√(n− 1)

[

n+ n

2
−

(

n+ n

2n

)2
]

=
a+ c2

2n
+

√

√

√

√(n− 1)

[

a+ c2

2
−

(

a+ c2

2n

)2
]

.

Since, D ∼=
↔

Kn has n vertices and n(n− 1) arcs and n(n− 1) closed walks of length
2, we have,

E
(

↔

Kn

)

= 2 (n− 1) = (n− 1) +

√

(n− 1)
2
=

n (n− 1) + n (n− 1)

2n

+

√

√

√

√(n− 1)

[

n (n− 1) + n (n− 1)

2
−

(

n (n− 1) + n (n− 1)

2n

)2
]

=
a+ c2

2n
+

√

√

√

√(n− 1)

[

a+ c2

2
−

(

a+ c2

2n

)2
]

.

If D is a non-complete directed symmetric strongly regular graph with two non-

trivial eigenvalues both with absolute value

√

a+ c2

2
−
(

a+ c2

2n

)2

/ (n− 1), then

from Theorem 2.4, we get,

E(D) =
a

n
+ (n− 1)

√

a+ c2

2
−

(

a+ c2

2n

)2

/ (n− 1) .

Since a = c2 for any directed symmetric strongly regular graph, this implies,

E (D) =
a+ c2

2n
+

√

√

√

√(n− 1)

[

a+ c2

2
−

(

a+ c2

2n

)2
]

.

Conversely, if the equality holds in (6), then a = c2 and by the previous discussion
on the function F (x), we see that Re(z1) = a/n. Hence D is a regular graph with
out-degree (or) in-degree a/n. Now, since equality must also hold in the Cauchy–

Schwarz inequality given above, we have, |Re(zi)| =

√

a−
(

a

n

)2

/ (n− 1), for 2 ≤

i ≤ n. Hence the considerations are reduced to three possibilities: either D has two

eigenvalues with equal absolute values, in which caseD must be
n/2

⊕
i=1

↔

K2 orD has two

eigenvalues with distinct absolute values, in which case D must equal
↔

Kn, or D has
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three eigenvalues with distinct absolute values equal to a/n or

√

a−
(

a

n

)2

/ (n− 1),

in which case, by Theorem 2.5, D must be a non-complete connected symmetric
directed strongly regular graph. �

In [9], Rada proved that if D is a digraph with n vertices and a arcs, then

E(D) ≤

√

n (a+ c2)

2
. Equality holds if and only if D is either the direct sum of n/2

copies of
↔

K2 . Since F

(
√

a+ c2

2n

)

=

√

(

a+ c2

2

)

n holds for the function F defined

in the proof of Theorem 3.1, and since F decreases on the interval

√

a+ c2

2n
< x ≤

√

a+ c2

2
, from the inequality

√

a+ c2

2n
≤

a+ c2

2n
≤ Re(z1) we get

F

(

a+ c2

2n

)

≤ F

(
√

(

a+ c2

2n

)

)

=

√

(

a+ c2

2

)

n .

i.e.,

a+ c2

2n
+

√

√

√

√(n− 1)

[

a+ c2

2
−

(

a+ c2

2n

)2
]

≤

√

(

a+ c2

2

)

n .

We thus see that (6) is an improvement on the McClelland inequality for the energy
of strongly connected digraphs.

Theorem 3.2. Let D be a strongly connected digraph on n vertices and a arcs,
such that Re(z1) ≥ (a+ c2)/(2n) ≥ 1. Then

(8) E(D) ≤
n (1 +

√
n )

2

with equality holding if and only if D is a directed strongly regular graph with pa-
rameters

(9)

(

n,
n+

√
n

2
,
3n+ 2

√
n

8
,
n+ 2

√
n

8
,
n+ 2

√
n

8

)

.

Proof. Let D be a strongly connected digraph with n vertices and a arcs. Consid-
ering the left hand side of (6) as a function of a, we easily calculate that it attains
its maximum value for a = n2+n

√
n−c2. Inequality (8) now follows by substituting

this value of a into (6).

For the second part, let D be a directed strongly regular graph with param-

eters

(

n,
n +

√
n

2
,
3n + 2

√
n

8
,
n + 2

√
n

8
,
n+ 2

√
n

8

)

. The adjacency matrix A of D
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satisfies the relation A2 = t I+λA+µ (J−I−A), where 0 < t < k. The eigenvalues

of A are k =
n+

√
n

2
, θ1, θ2 where θ1 and θ2 are the roots of the quadratic equation

(10) x2 + (µ− λ)x+ (µ− t) = 0 .

From (9) and (10), we conclude that θ1 =
√
n/2 and θ2 = −

√
n/2. Using Theorem

2.5, we then get

E(D) =
n+

√
n

2
+ (n− 1)

√
n

2
=

n(1 +
√
n )

2
.

Conversely, if D is a strongly connected digraph with E(D) = n(1 +
√
n)/2, then

since a = n2+n
√
n−c2, we have, E(D) =

a+ c2

2n
+

√

(n− 1)

[

a+ c2

2
−
(

a+ c2

2n

)2
]

.

By Theorem 3.1, D is a non-complete directed symmetric strongly regular graph

with two non-trivial eigenvalues both with absolute value

√

√

√

√a+ c2

2
−

(
a+ c2

2n

)2

n− 1
.

Since a = c2, the eigenvalues of D are k =
a

n
=

n+
√
n

2
, θ1 =

√

a−

(
a

n

)2

n− 1
, and

θ2 = −

√

(

a−
(

a

n

)2
)

/ (n− 1) where θ1 and θ2 are the roots of x2 + (µ− λ)x +

(µ− t) = 0. This implies µ− t = θ1 θ2 = −n/4 and µ = λ. Using Lemma 2.3 we get

µ = λ =
n+ 2

√
n

8
and t =

3n + 2
√
n

8
. Hence D is a directed strongly regular graph

with parameters

(

n,
n+

√
n

2
,
3n + 2

√
n

8
,
n+ 2

√
n

8
,
n + 2

√
n

8

)

. �

4. CONCLUDING REMARKS AND AN OPEN PROBLEM

The importance of the main result of the present paper, namely of inequality
(d), depends on which digraphs satisfy the condition (c). Of course, connected
graphs satisfy it, but in that case inequality (d) reduces to the previously known
Koolen–Moulton bound (a).

Some less trivial examples in which the condition (c) holds are the following:

• the n-vertex digraph containing 2n − 1 arcs, obtained by removing one arc
from the n-vertex cycle Cn ;

• any strongly connected n-vertex digraph in which at least bn/2c pairs of
vertices have arcs in both directions;

• a strongly connected digraph on 14 vertices and five closed walks of length
two, designed by Rada [10] (see Fig. 2 in Ref. [10]), for which Re(z1) =

√
5

and (a+ c2)/(2n) = 17/14.
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Characterizing all those strongly connected digraphs with n vertices, a arcs,
and c2 closed walks of length two, for which condition (c) holds remains an open
problem.
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