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Abstract

In this paper, we present a generic, scalable and adaptive load balancing parallel Lagrangian particle tracking approach

in Wiener type processes such as Brownian motion. The approach is particularly suitable in problems involving particles

with highly variable computation time, like deposition on boundaries that may include decay, when particle lifetime

obeys exponential distribution. At first glance, Lagranginan tracking is highly suitable for a distributed programming

model due to the independence of motion of separate particles. However, the commonly employed Decomposition

Per Particle (DPP) method, where each process is in charge of a certain number of particles, actually displays poor

parallel efficiency due to the high particle lifetime variability when dealing with a wide set of deposition problems that

optionally include decay. The proposed method removes DPP defects and brings a novel approach to discrete particle

tracking. The algorithm introduces master/slave model dubbed Partial Trajectory Decomposition (PTD), in which

a certain number of processes produce partial trajectories and put them into the shared queue, while the remaining

processes simulate actual particle motion using previously generated partial trajectories. Our approach also introduces

meta-heuristics for determining the optimal values of partial trajectory length, chunk size and the number of processes

acting as producers/consumers, for the given total number of participating processes (Optimized Partial Trajectory

Decomposition, OPTD). The optimization process employs a surrogate model to estimate the simulation time. The

surrogate is based on historical data and uses a coupled machine learning model, consisting of classification and

regression phases. OPTD was implemented in C, using standard MPI for message passing and benchmarked on

a model of 220Rn progeny in the diffusion chamber, where particle motion is characterized by an exponential lifetime

distribution and Maxwell velocity distribution. The speedup improvement of OPTD is approximatelly 320% over standard

DPP, reaching almost ideal speedup on up to 256 CPUs.
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Introduction

Random motion of particles suspended in liquid or a gas is
described by Brownian motion (Wiener process) and can be
modelled by means of Lagrangian method. The simulation
of a large number of particles can be time-consuming,
due to frequent motion changes caused by collisions with
other molecules of liquid or gas. Reducing computational
time is of particular interest, bearing in mind that the
results could provide support in decision-making when the
dynamics of harmful substances is being monitored. Special
attention should be given to simulations in which different
particles require different computation time to generate their
trajectories until reaching decay or deposition.

Generating a trajectory of a single particle is independent
from generating other particles’ trajectories, which at the
first glance makes this task trivial to parallelize by a
simple static decomposition. By using Decomposition Per
Particle (DPP), each processor is responsible for modeling
trajectories of approximately equal number of particles,
as demonstrated by Lenôtre (2016), Roberti et al. (2005)
and Larson and Nasstrom (2002). When solving problems
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in which the particle terminates its motion by decay or
deposition, this approach shows the downside in reduced
parallel efficiency caused by variability of computation time
necessary to generate trajectories of individual particles.
Besides this method there is a domain decomposition
approach, where space is partitioned into subdomains and
each subdomain is addressed to a different processor.
With this kind of decomposition, there is an additional
communication overhead tied to particles transferring from
one subdomain into another, as showed by Charles et al.
(2008) and Beaudoin et al. (2007).

In this paper, we present a novel approach to the paral-
lelization of the Lagrangian particle tracking, applicable in
Wiener type processes characterized by stationary indepen-
dent increments. The algorithm eliminates the disadvantages
of DPP by introducing medium-grain parallelism that is
embodied in a novel Partial Trajectory Decomposition
(PTD) concept. The main idea behind the PTD approach is
that multiple processors should be responsible for creating
behaviour history of a single particle. Since multiple proces-
sors can be involved in the simulation of a single particle,
we break the problem domain into smaller pieces compared
to DPP. The algorithm uses a master-slave parallelization
model in which partial trajectory producers generate so-
called partial trajectories with constant length and put them
into the shared queue. On the other hand, there are particle

simulators that consume those partial trajectories to run real
particle tracking.

Selecting optimal values of the parameters, such as partial
trajectory length, chunk size and the fraction of processors
acting as partial trajectory producers, is very important
for achieving maximum efficiency of the method and keep
the load balanced. An incorrect choice of these parameters
could possibly result in the congestion of the shared queue.
Since determining the optimal values of PTD parameters
is not a straightforward (linear) task, we employed the
evolutionary-based meta-heuristics. To assess the simulation
time for any combination of the PTD parameter values,
the evolutionary optimization uses an approximate machine
learning model based on historical records on previous runs.
The improved method that makes use of the evolutionary
algorithm and surrogate model is referred to as Optimized
Partial Trajectory Decomposition (OPTD) henceforth.

We demonstrate the performance gain for the case of
tracking Radon progeny in a diffusion chamber. It is a good
example of a time-consuming simulation, where individual
particles have approximately exponential distribution of the
computation time. More precisely, there is a small chunk

of particles that require much more time to generate their
trajectories than the majority of the particles in a chamber.

Related work

Lagranginan tracking is an essential technique in numerous
research areas, some of which employ Monte-Carlo-based
models. In order to speed up the simulation, many of
those research studies such as Roberti et al. (2005),
Lenôtre (2016), Larson and Nasstrom (2002), Charles
et al. (2008), Breuer et al. (2006) and Beaudoin et al.
(2007) addressed the parallelization of particle tracking
algorithms. In most cases, the authors suggest two strategies
of decomposition: (i) Domain Decomposition, in which the
space integration domain is partitioned into smaller volumes,
and each volume (subdomain) is addressed to a different
processor as demonstrated by Roberti et al. (2005), and (ii)

Decomposition Per Particle (DPP), where each processor
carries out a certain number of particles throughout their
lifetime. Nevertheless, in the first decomposition approach,
the additional communication is required when a particle
moves from one subspace into another. There is a higher
probability of particles moving from one subspace to another
with the increase of the number of processors involved.
Additionally, in the real-world use cases, the particles would
not be distributed equally over subdomains, which would
eventually lead to an unequally balanced load. The second
decomposition approach does not involve any additional
communication burden, as stated above, but if particles are
characterized by highly variable computation time, that still
brings unequally balanced processor utilization.

Lenôtre (2016), Roberti et al. (2005) and Larson and
Nasstrom (2002) introduce a parallel approach based on
decomposition per particle (DPP) to avoid any additional
communication required in the domain decomposition. To
the best of our knowledge, none of them considers the
problem of reduced parallel efficiency.

Charles et al. (2008) created a parallel simulation of the
sedimentation of a large number of particles in shallow
water using the Lagrange method. They present a parallel
implementation based on DPP with three different sediment
suspension methods. Nonetheless, all three approaches in
their research are implemented on the assumption that there
was a large number of particles. In that case, there is a little
chance that all particles for which a specific processor is in
charge are suspended and that the processor remains idle.

In Breuer et al. (2006), the authors implemented an
idealized mouth-throat model to predict the success of
aerosol therapy. The simulation of the model occurs in
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two phases, continuous which is calculated by means of
the finite-volume method and particle phase simulated
using the Lagrange approach. Both phases were parallelized
using the domain decomposition method, with the potential
drawback that particle tracking is not balanced among
participating processors. However, this defect does not
affect the efficiency of the entire algorithm to a great
extent, because the continuous phase requires much more
processing power than the particle phase.

Beaudoin et al. (2007) describe a parallel algorithm
for the simulation of the soluble substances within highly
heterogeneous porous substances. The algorithm relies on
the independence of particles and the domain decomposition
ends when all particles dissolve or leave the monitored area.
They emphasize that the area in which the particles are
monitored must be as large as possible, so that particles
would not jump out. It is also underlined that it is generally
difficult to calculate the computational power required to
perform the simulation and that the two main factors
affecting the parallel algorithm are heterogeneity and particle
diffusion. The presented speedup indicates the problem
which we attempt to overcome by our own approach.
However, Stochastic Differential Equation (SDE) considered
by Beaudoin et al. (2007) contains the fluid component
besides the Brownian motion component. Unfortunately,
our (O)PTD approach cannot be applied to this kind of
problem. For our decomposition to work, we assume a fully
stochastic process with stationary independent increments
(Wiener process).

To the best of our knowledge, none of the above methods,
whether using static or dynamic domain decomposition or
particle decomposition, is highly scalable independently
of the number of CPUs and the number of particles
involved. The problem can be rectified to a certain extent
by employing dynamic particle decomposition, which calls
for additional communication, thus further slowing down the
execution. The major issue that has not been treated in the
above mentioned studies arises when processors outnumber
particles to track, i.e. at the very end of the deposition/decay
process. As a result, increasing number of processors will
actually lead to significant slow down. With our approach,
the tracking speedup is apparent even with only a single
particle remained to track. Nonetheless, there is no need
to modify the decomposition during the simulation, if we
assume that the number of processors involved is constant.

The progeny of 220Rn in the diffusion
chamber

As a representative benchmark of our (O)PTD method,
we have chosen to track 222Rn progeny in the diffusion
chamber, being a pure Wiener process and representing a
large class of particle tracking problems in research and
engineering.

The diffusion chamber shown in Fig. 1 is a cylindrically
shaped device covered by permeable filter with solid state
nuclear track detector placed inside. Radon, which is
presumably homogeneously distributed inside the chamber,
decays, forming new short-lived progeny atoms. The formed
progeny diffuses through the chamber and can further decay
or deposit onto the chamber wall. A certain portion of the
progeny decay in the air (hereafter referred to as the air

fraction) and others decay after the deposition onto the wall
(hereafter referred to as the deposited fraction). The problem
setup is identical to the setup described by Nikezić and
Stevanović (2005) and Nikezic and Stevanovic (2007).

The progeny particles move randomly, as a result of
continuous bombardment from molecules of the surrounding
gas (in our case air). Such random motion is known
as Brownian motion or Wiener process. The random
motion of particles is characterized by velocity direction
and magnitude, as well as the path length between two
subsequent collisions. All these variables are random in
nature.

As stated above, radon is distributed homogeneously in
the air chamber. The 218Po, as the first progeny, appears
upon Radon decay. Due to the homogeneous distribution, the
location of the point where 218Po forms could be generated
as proposed by Nikezic and Stevanovic (2007):

z0 = H · u1,

r = R ·
√
u2, (1)

ϕ = 2π · u3,

where ui(i ∈ N) are uniform random numbers between 0 and
1. Consequently

x0 = r · cosϕ,

y0 = r · sinϕ.

Random sampling of each 218Po lifetime, T , is given as

T = −τ ln(u4), (2)
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Figure 1. Diffusion chamber detector

where τ = T 1
2
ln 2 denotes the mean lifetime. A random unit

vector (px, py, pz) represents the direction of motion of a
progeny atom, while the distance λ, up to the collision with
another atom, is taken from the exponential distribution as

λ = −l · ln(u5), (3)

where l designates the mean free path. The speed of
the progeny atom v could be determined by Maxwell
distribution. The time until collision is λ

v , giving a particle
state for a Monte-Carlo step i+ 1 as

xi+1 = xi + λ · px,

yi+1 = yi + λ · py, (4)

zi+1 = zi + λ · pz,

ti+1 = ti +
λ

v
.

A 218Po atom decays if all collisions remain within
the chamber throughout its entire lifetime. Otherwise, the
progeny deposits onto the chamber wall. In our model, any
particle contact with the chamber wall means immediate
deposition.

In the previous paragraphs we have described the direct
simulation of the random motion of the particles in the air
volume inside a diffusion chamber. However, this simulation
is immensely time-consuming because a particle experiences
about 109 collisions per second and moves randomly at
very short distances. The creation of a single particle
history takes more than several hours on Intel Core-i7
based computers. Furthermore, in order to calculate the
air deposited fractions or the distribution of the deposited

progeny, thousands of particle histories are needed. In
addition, the computational time distribution is highly
variable. More precisely, more than 90% particles deposit
at the very beginning of the simulation, while a relatively
small fraction of particles require much longer computation
time until reaching deposition on the wall or decay in the
air. If we take a coarse-grained parallelization approach
assigning each processor a certain amount of particles (DPP),
this heterogeneity will be charged by significant loss of
efficiency. One of the key parts of this research is the creation
of a finer-grain decomposition approach that will resolve the
mentioned heterogeneity issue.

Partial Trajectory Decomposition (PTD)

At first sight, Lagranginan tracking is suitable for a parallel
programming model, since all the particle trajectories are
entirely independent. We can easily achieve speedup using
DPP, where each processor manages a certain number of
particles. Nevertheless, when particles are characterized
by highly variable computation time, DPP will lead to
imbalanced processor utilization. There is a possibility
that a very small number of particles require much more
computation time, which results in significantly reduced
efficiency.

Our novel Partial Trajectory Decomposition (PTD)
approach (Fig. 2) uses a master-slave model in which partial
trajectory producers generate trajectories of specified
length and put them into the shared queue. They generate
partial trajectories according to Eq. (4). On the other
hand, there are particle simulators which consume partial
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trajectories from the shared queue to perform real particle
tracking.

The main idea of the PTD method is that particle

simulators are still in charge of simulating motion of a
certain set of particles, the same as in DPP approach, but
it excludes them from the demanding work of generating
particle trajectories. Particle simulators actually manage the
particle motion by bringing together partial trajectories from
the shared queue. This approach brings finer granularity,
achieving a better load balance. In the edge case when only
one particle remains in the chamber, our PTD approach still
includes all partial trajectory producers. The number of
particle trajectory producers and particle simulators depends
on the number of processors and the configuration of the
computer system used to perform the simulation. More
details will be provided in the Section Optimized Partial

Trajectory Decomposition.

The task of a partial trajectory producer is to generate
partial trajectories of a specified length. At the very
beginning, each particle simulator takes the initial location
of a particle and tracks it by taking partial trajectories from
the queue and adding them up. When a particle simulator

ends up with a certain particle simulation, it takes the initial
position of another particle and so on. The particle simulator

terminates when all particles are deposited or decayed. Fig.
3 presents the algorithm by which a particle simulator tracks
a particle.

Step 1. Take a partial trajectory from the queue. It is
important to note that a message (Fig. 4) does not contain
any intermediate points of the partial trajectory, but only the
following:

• Minimal bounding box of the partial trajectory, defined
by points A . . .G. This allows representing large
partial trajectories by only 8 points.
• Translation vector ~X .
• Partial trajectory time, which represents the time

needed to cross the partial trajectory.
• Random number generator seed, which can be used to

reconstruct the entire partial trajectory if needed.

The presented message structure aims to reduce the
amount of data transferred between partial trajectory

producers on the left side and particle simulators on the right
side.

Step 2. When a particle simulator takes a message from the
queue, it is necessary to translate a minimum bounding box
to the current particle position, sticking the partial trajectory

to the current particle position. Afterwards, we perform the
obligatory check if the bounding box intersects the chamber
walls. If there is no intersection (Fig. 5a), we move on to
Step 3, or else (Fig. 5b) we move on to Step 5.

Step 3. In case that the minimum bounding box does not
intersect the wall, we must also check if the particle has
enough lifetime to fulfil the entire partial trajectory. It is
an easy task, since the message that contains the partial
trajectory also contains time interval to cross it. If the particle
does not have enough lifetime to fulfil the entire partial
trajectory, we move on to Step 5 and determine particle
decay position, or otherwise move forward to Step 4.

Step 4. When we are assured that the particle fulfils the entire
partial trajectory and gets a new position by translating by
vector ~X (Fig. 6), upon updating the particle motion time,
we can safely move on to the next partial trajectory treatment
(Step 1).

Step 5. The particle deposited somewhere along the partial
trajectory and its final position has to be determined. Since
the partial trajectory message does not contain a full path,
the particle simulator itself has to simulate the particle
motion along a partial trajectory until deposition/decay.
Owing to the fact that the partial trajectory message contains
a random number seed, it is entirely possible for the particle

simulator to reconstruct the identical path. This is an obvious
computational overhead, but the communication is reduced
by an order of magnitude.

The parameters affecting performance

The main requirement for any parallel algorithm is to
minimize interprocess communication and to maintain the
optimal load balance. This is not a trivial task in the case
of the PTD approach, due to a number of quantities having
arbitrary values. First of all, it is necessary to select the
optimal value of partial trajectory length (Lpt) and a fraction
of the processes to act as particle simulators, given the
total number of processes. It is obvious that the amount of
communication is greater if the Lpt is smaller. For example,
if there is a large number of partial trajectory producers

and only a single particle simulator and relatively small
Lpt is chosen, it will give rise to a potential congestion
of the shared queue. On the other hand, larger Lpt will
reduce the amount of communication among processes, but
the particle simulator will devote more of its resources to
the reconstruction of the partial trajectories for the purpose
of determining the final deposition locations (Step 5 in the
previous section). In addition, even in case of highly optimal
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Figure 2. Partial Trajectory Decomposition (PTD) approach to Lagrangian particle tracking

START

Take a partial
trajectory from

the shared queue. 

Does particle leave the  
geometry if it moves along  

the partial trajectory?

No

Translate particle by X and
update its lifetime.

Does particle have  
enough lifetime to fulfil partial

trajectory?

Yes

No

Yes

END

     Final location.  

1

2

3

5

4

Initial position.

Simulate particle motion
until reaching final state.

Figure 3. Particle simulator tracking a particle

Figure 4. Contents of a message in the shared queue
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a) b)

Figure 5. (a) The minimum bounding box does not intersect the chamber wall. (b) The minimum bounding box intersects the
chamber wall.

Figure 6. A particle simulator performs real particle tracking by translating current particle position by ~X.

parameters, there is still a possibility of congestion due to
hardware or software limitations of a HPC system. Network
shortages between arbitrary nodes is an obvious example of
the efficiency reduction.

To create a robust solution that is also congestion resistant,
we had to create a mechanism in which partial trajectory

producers will produce not only a single partial trajectory
at a time, but a chunk of partial trajectories on demand.
The optimal trajectory chunk size (Nchunk) also depends
on the implementation of the PTD and on the specific
HPC environment, like all other PTD parameters already
introduced.

The MPI implementation of the PTD

We implemented the said approach using standard MPI
for message passing on a model of 220Rn progeny in

the diffusion chamber (Fig. 7). The process ranked 0
(master) generates initial particle positions and operates the
shared queue employing non-blocking MPI API. Additional
responsibility of the master process is to manage the
distribution of the deposited particles.

Each partial trajectory producer (Nprod processes)
generates a partial trajectory chunk on demand and sends it
out to the master. The master then sends the request for a new
partial trajectory chunk when the previous one is completed.
On the right hand side, each particle simulator initially sends
the request for a particle to the master, and waits for the
response. The response includes one of the following: (i) the
data regarding a particle whose motion is to be simulated,
(ii) the termination message that all particles in the diffusion
chamber are already deposited or decayed. When a particle
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Figure 7. The MPI implementation of the PTD method

deposits, a particle simulator sends its final location to the
master together with the request for another particle.

For the purpose of generating all randomness in the
eqs. (1)-(4) we employed a standard function drand48_r

that generates pseudo-random numbers using the linear
congruential algorithm and 48-bit integer arithmetic. Each of
the partial trajectory producers has its own seed to ensure the
independence of the generated trajectory streams. The seed
value is obtained as a sum of the process rank and the Unix
timestamp taken from the real-time clock.

The choice of values of the following parameters: (i)

partial trajectory length (Lpt), (ii) the number of the
particle simulators (Nsim), and (iii) the trajectory chunk
size (Nchunk), is crucial for the performance. We refer to
all these parameters as PTD parameters in further text.
As mentioned above, their optimal values depend on the
total number of CPUs involved and specific HPC computing
environment. A wrong selection of PTD parameter values
could lead to a total or partial congestion of the master due
to its inability to process all incoming requests.

The initial benchmark has shown that changing PTD
parameters most certainly affects the total simulation time

in a non-linear manner. There are scenarios in which a small
change of any PTD parameter causes a profound difference
in the simulation time. The major responsibility for this
behaviour lies in a total or partial congestion of the master.

Optimized Partial Trajectory Decomposition
(OPTD)

In order to improve the performance of PTD and
prevent a bad selection of method parameters, especially
those that would lead to the total queue congestion,
we propose a specific optimization procedure based on
evolutionary optimization with a single objective function
being simulation time Tsim. For a given total number of
CPUs

Ncpu = Nprod +Nsim,

it searches for the optimal combination of the PTD
parameters in the given HPC environment. However, it is
impossible to perform the evaluation of the PTD parameter
combination analytically since they largely depend on
hardware and software configuration. The only absolutely
exact way to evaluate the PTD parameter combination is to
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execute a real simulation in the target HPC environment, but
such a process can be very time consuming and infeasible
to complete in a real time frame, since the optimization
process requires hundreds of evaluations. Fortunately, it is
possible to approximate the simulation time of an individual
(PTD parameter combination) requested by the evolutionary
optimization by a surrogate model based on machine
learning. The surrogate model learns from the acquired
historical data to predict the simulation time for various PTD
parameter combinations.

As shown in Fig. 8, the surrogate model approximates
the simulation time Tsim for the given Ncpu and various
combinations of PTD parameter values suggested by the
evolutionary algorithm. The proposed optimization scheme
is named Optimized Partial Trajectory Decomposition
(OPTD). The OPTD adds one more application layer on top
of the PTD stack, which frees the end-user from configuring
PTD parameters. The entire system is automated so that the
end user is only required to set a total number of available
processors (Ncpu). Optionally, one is also allowed to modify
evolutionary algorithm variables such as the number of
individuals, number of generations, mutation probability, etc.

Predicting the simulation time using the
surrogate model

The historical data contains simulation time for each
historical PTD parameter value combination in the form:

(Ncpu, Lpt, Nsim, Nchunk, Tsim).

It became apparent that creating a single regression model
for predicting the simulation time over historical data was
not a trivial task. The reason for this lies in those samples
that caused total congestion, having too high Tsim to be
covered by a single regression model. Consequently, to
achieve acceptable accuracy, we created a surrogate model
that actually consists of two coupled ML models (Fig. 9).

The first model is a classification model that employs
well-known J48 decision tree algorithm described by Hall
et al. (2009) over the entire historical data set. It evaluates
whether the PTD parameter value combination causes the
queue congestion. Its input of historical data was slightly
modified by replacing the column Tsim by the corresponding
binary feature SQoverflow. It classifies each PTD parameter
combination into Yes, if it causes the congestion, or No

otherwise. During an inference, if the classification model

concludes that specific PTD parameter combination causes
congestion, such response goes directly to the output.
Otherwise, we invoke a regression model to predict the
simulation time. We have achieved the best accuracy for the
regression model by employing an artificial neural network
(ANN), which was trained using the same historical data
excluding those samples that caused total congestion.

Preventing spurious minima

During evolutionary optimization, we evaluate numerous
PTD parameter combinations by the surrogate model.
Regardless of the model accuracy, there is a possibility that
its suggested total Tsim is lower than achievable in practice
Jin (2005) due to potential overfitting. It is mandatory to
ignore such predictions, but as shown by Jin (2005), there is
no single kind of approach to this problem. We have chosen
to create a solution which is adapted to the specific problem
under consideration by approximating the ideal simulation

time for a givenNcpu. In case that the surrogate predicts Tsim
less than the ideal simulation time, we judge that individual
with the worst fitness value.

The model that estimates the ideal simulation time for any
Ncpu uses data from historical runs as all previous models,
but is much simpler. First we determine the minimum
historical Tsim for each Ncpu contained in the data set. A
simple multi linear interpolation shown in Fig. 10 estimates
the ideal simulation time for any Ncpu in range.

The unknown ideal simulation time tx for a given Ncpu =

n can be calculated by:

tx − t1
n− n1

=
t1 − t2
n1 − n2

. (5)

Results and discussion

We benchmarked the proposed PTD method tracking 220Rn

progeny in a cylindrical detector described in Section The

progeny of 220Rn in the diffusion chamber. First of all, we
present the comparison between DPP and PTD methods to
demonstrate the influence of the finer-grain parallelism. The
second goal of the study was to create a framework that
adds an optimization layer (OPTD) with a purpose to obtain
the maximum efficiency of the PTD method. Consequently,
the second benchmark part represents a comprehensive
performance analysis of all considered methods - DPP, PTD,
and OPTD.

The diameter of the diffusion chamber was R = 0.04m,
while the chamber height was H = 0.08m. The mean free
path in the air has a value of 0.066µm, and a half-life of
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Figure 8. Predicting optimal values of PTD parameters using evolutionary algorithm
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222Rn is 183s. We sampled the velocity of 218Po from
the Maxwell distribution at normal atmospheric conditions
(293K and 1013mbar).

We carried out testing on the cluster containing 22
worker nodes, each equipped with dual Intel Xeon E5-
2670 @ 2.60GHz (16 cores per node) with Infiniband
QDR interconnection. The MPI implementation of OPTD
approach is availiable on GitHub ∗.

Decomposition Per Particle (DPP)

The Fig. 11 shows distribution of the simulation time
required to deposit/decay each of 1024 particles of Radon
progeny on 256 CPUs using standard DPP method. As the
histogram suggests, there is a very small number of particles
that require much longer computational time to deposit or
decay, compared to the majority.

Even 92% of the particles deposited at the very beginning,
largely affecting the number of processors involved in
simulation over time and leading to extremely low efficiency
of 0.29. The efficiency of DPP method even decreases with
the increase of the number of processors, as shown in Fig.
12.

Partial Trajectory Decomposition (PTD)

The Fig. 13 presents the speedup of the simulation of 220Rn

progeny obtained by PTD and DPP. The PTD parameters
were selected manually in three distinct combinations:

• Lpt = 10000, Nchunk = 10000, Nsim = 1,
• Lpt = 10000, Nchunk = 10000, Nsim = 2,
• Lpt = 10000, Nchunk = 10000, Nsim = 3.

It is evident that PTD shows significantly better scalability
than DPP in all three benchmarked parameter combinations.
However, it is also obvious that it is not an easy task to
establish an unambiguous analytical relation for parameter
tuning by provisional measurement. It seems that a larger
Ncpu requires a larger number of particle simulators to reach
better scalability, although the speedup results are still far
from ideal.

Parameter discussion In the identical setup as presented
above, we have benchmarked our PTD method in the
simulation of 1024 particles of Radon progeny using various
Ncpu (16, 32, 64, 128, 196 and 256) and various values of
PTD parameters:

• Lpt : 1000, 10000, 100000, 200000, 300000, 400000
and 500000,

• Nchunk : 256, 1024, 4096, 16384, 32768, 65536,
130762 and 261344,

• Nsim : 1, 2, 3, 4 and 5,

which gave us the simulation time (Tsim) for 1680 different
combinations of the PTD parameters and Ncpu.

The Pearson correlation between Ncpu and Tsim on the
entire historical data set was only -0.12. This unexpectedly
low value was a consequence of (not so rare) occurrence
of congestion, which was confirmed by a stronger Pearson
correlation (-0.72) between same two variables over
historical data that excluded rows with apparent congestion.
Table 1 shows how PTD parameters impact Tsim. As
expected, an increase of the number of processors has
the greatest effect on reducing the simulation time. It is
also apparent that with a lower Ncpu, there is no need
for additional particle simulators. What should be kept

Table 1. The best combinations of the PTD parameters
obtained from the simulation of 1024 particles of 220Rn progeny
for various Ncpu.

Ncpu Lpt Nchunk Nsim Tsim[s]
16 100000 262144 1 138.0
32 100000 262144 1 61.0
64 10000 65536 1 31.5

128 100000 262144 2 16.6
192 100000 130672 2 11.2
256 100000 65536 5 8.2

in mind is that even the combination of PTD parameters
seemingly optimal for a lower Ncpu could lead to a partial
or total congestion when a simulation runs on a higher Ncpu.
Moreover, the changes of the PTD parameters cause a non-
linear change of Tsim (see Fig. 14). Some values, especially
those with congestion, are much higher than 200s, but we cut
them off for the sake of better visibility.

As illustrated in Fig. 14, with higher Lpt, the simulation
time reduces with increased number of particle simulators

Nsim. This result is expected, because with a higher value of
Lpt, with a larger number of processors, a particle simulator

spends significantly more time on trajectory reconstructions,
resulting in a partial congestion of the shared queue. A
larger Nsim obviously reduces the partial congestion as the
trajectory reconstructions run in parallel, thus speeding up
the execution.

∗https://github.com/srdjan034/optd
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Figure 11. DPP method: The distribution of the simulation time for 1024 particles on 256 CPUs
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Figure 14. Tsim as a function of the PTD parameters in the simulation of 1024 particles of 220Rn progeny on 256 CPUs.

Predicting the simulation time and the
occurrence of congestion

The surrogate model for predicting Tsim for the given PTD
parameters consists of two separate ML models (see Fig.
9) over the historical data described in Section Parameter

discussion. The actual implementation employs Weka
framework developed by Hall et al. (2009) for both models
over the same input vector x = (Ncpu, Lpt, Nsim, Nchunk).

The first model is the classification model created by C4.5
decision tree algorithm developed by Salzberg (1994). As
explained above, it classifies the PTD parameter combination
into a set Yes, No, depending on whether they cause the
congestion. In the entire historical data set, 1131 samples
were marked as No (67.32%), while 549 were marked
as Yes (32.67%). 10-fold cross validation showed the best
performance for the tree having 53 leaves and total tree
size of 105. This model correctly classified 1602 (of 1680)
instances, giving the satisfactory precision of 95.35%. Table

2 shows the confusion matrix of the classification model. The
performance was satisfactory since only 27 samples which
actually led to congestion, were classified incorrectly.

Table 2. Confusion matrix of the classification model

Predicted: No Predicted: Yes
Actual: No 1260 22

Actual: Yes 27 371

The second model is the regression model created using
the Multilayer perception (MLP) method. As stated above,
the model was created over a subset of 1131 samples that
did not cause congestion of the shared queue. Its task was
to predict the simulation time of 1024 particles of 220Rn

progeny for the given PTD parameters and Ncpu.

The neural network contained four neurons in the input
layer, one neuron in the output layer, and two hidden layers
of 20 neurons, all with sigmoid activation. An optimal
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number of hidden layers and the number of neurons per
layer were tuned manually. We used 10-fold cross validation
for the regression model as well, with Root Mean Square
Error (RMSE) as an error indicator. The RMSE of the
final model was only 2.65s (≈ 1.5% of the average Tsim)
with satisfactory Pearson correlation of 0.997. The standard
deviation of the folds’ RMSE was approximately 2%,
showing sufficient suitability of the data set, as well as the
adopted regression model.

We also considered excluding Nchunk and Lpt from
the model since Pearson correlation analysis against Tsim
ranked Ncpu and Nsim high (>0.5), while Nchunk and Lpt
had negligible values. However, if we take only samples
where Nsim = 1, the Pearson correlation of Nchunk and Lpt
increases to over 0.4, leading us to keep all PTD parameters
as attributes.

As mentioned above, we created a coupled surrogate
model upon a failure to develop a regression model without
any classification preprocessing, over the entire historical
data set. For the purpose of creating such a regression
model, we benchmarked several ML algorithms, obtaining
the best performance from the Random Forest. For the sake
of comparison, the best Random Forest regression model had
RMSE of as much as 644.68, which was significantly worse
than adopted coupled model.

Optimized Partial Trajectory Decomposition
(OPTD) performance

In order to benchmark our novel OPTD approach, we
have employed the evolutionary optimization with elitism
enabled, using MOEA optimization framework by Hadka
(2016), to determine the optimal PTD parameters (see Fig.
8). The coupled surrogate model was used to evaluate various
combinations of PTD parameters. The number of evaluations
was limited to 5000 with the population size of 100 and
mutation rate of 0.5. Fig. 15 shows the speedup of the
simulation of 1024 particles of 220Rn progeny by OPTD
versus PTD and DPP.

It is apparent that OPTD showed significantly better
scalability compared to the manually tuned PTD and
especially coarse grained DPP. The speedup improvement
of OPTD was more than 320% over DPP and 150% over
pure PTD, reaching almost the ideal speedup on up to 256
CPUs. Based on the optimal PTD parameter values for a
given Ncpu, we can also draw the following conclusions:

• As Ncpu increases, the optimal trajectory length Lpt
also increases. In particular, increasing Lpt increases

the throughput in the sense that more generated
collisions can pass through the system using the same
amount of communication.

• With the increase of Ncpu the number of optimal
Nsim also increases. This result is expected because
a larger Nsim speeds up trajectory reconstructions,
which prevents the shared queue congestion.
• With the increase of Ncpu, the optimal Nchunk also

increases. This kind of system behavior is logical
because, with more CPUs, Nsim also increases,
preventing shared queue congestion and allowing
generating more partial trajectories per single request.

• Let’s take the subset where Nsim is constant, i.e.
Nsim = 1. In such subset, as Ncpu increases, the
optimal Lpt decreases. The system aims to reduce the
path reconstruction burden, as the number of partial
trajectories to be processed increases.

The Pearson correlation diagrams that demonstrate the above
claims are shown in Fig. 16.

Conclusion

In this paper, we have presented a novel approach in the
parallelization of discrete tracking of the chaotic motion
of particles through a liquid or gas, within the predefined
geometry using the Lagrange method. The behavior of the
particles is described by Brownian motion. The emphasis
is placed on the specific type of particle simulations
characterized by inherent different computational time per
particle due to either wall deposition or decay. The presented
algorithm removes defects of Deposition Per Particle and
brings a finer-grain approach to discrete particle tracking.
The main part of the new algorithm is the Partial Trajectory
Decomposition, which introduces the master/slave model
where multiple workers are responsible for managing
tracking of a single particle. Since multiple workers can be
involved in the simulation of a single particle, we break the
domain decomposition into smaller pieces, which gives us a
better load balance compared to the DPP method. To select
optimal values of the computational parameters and achieve
maximum efficiency, we added the optimization layer to
create Optimized Partial Trajectory Decomposition (OPTD).
The OPTD approach contains a mechanism that decides
upon the optimal values of relevant PTD parameters. That
mechanism is based on the evolutionary algorithm, which
itself employs the surrogate model to estimate the simulation
time from the values of PTD parameters.
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Figure 16. Pearson correlation of the optimal PTD parameters: (a) The whole data set, (b) Only records where Nsim = 1.

The results showed that the algorithm posses a good
scalability potential showing speedups close to ideal. Our
major innovation is reflected in creating a novel approach for
parallelizing Lagrangian tracking in the form of an extensible
framework. It should be simple to modify the model of
particle behavior, as well as geometry. Last but not least, the
presented approach could also be implemented with a variety
of distributed programming technologies, not only MPI.

The main disadvantage is that the automatic training of the
surrogate model, which takes a major part in the evaluation
of the PTD parameter combinations, is still not supported.

Also, we did not take into account the impact of the problem
geometry on the performance. If we could calculate the
probability of hitting a boundary, that value could represent
the influence of the geometry within the surrogate model.
However, computing such probability is not a trivial task
and will be a subject of future research. Another direction
of the future research will focus on the implementation of
the presented method on the GPU platform, while the other
could be an implementation of the algorithm in the HPC-
in-the-Cloud environment with the capability of adding new
workers at any time. In that case, the system has to adapt
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dynamically to the new number of CPUs, determine their role
and modify parameters to achieve optimal performance.
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