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a b s t r a c t

The cloud computing paradigm has gained wide acceptance in the scientific community, taking a
significant share from fields previously reserved exclusively for High Performance Computing (HPC).
On-demand access to a large amount of computing resources provided by Cloud makes it ideal
for executing large-scale optimizations using evolutionary algorithms without the need for owning
any computing infrastructure. In this regard, we extended WoBinGO, an existing parallel software
framework for genetic algorithm based optimization, to be used in Cloud. With these extensions, the
framework is capable of elastically and frugally utilizing the underlying cloud computing infrastructure
for performing computationally expensive fitness evaluations.

We studied two issues that are pertinent when dealing with large-scale optimization in the elastic
cloud environment: the computing instance launching overhead and the price of engaging Cloud for
solving optimization problems, in terms of the instances’ cumulative uptime. To explain the usability
limits of WoBinGO framework running in the IaaS environment, a comprehensive analysis of the
framework’s performance was given.

Optimization of both total optimization time and total cumulative uptime, leads to minimizing the
cost of cloud resources utilization. In this way, we are proposing an intelligent decision support engine
based on artificial neural networks and metaheuristics to provide the user with an assessment of the
framework’s behavior on the underlying infrastructure in terms of optimization duration and the cost
of resource consumption. According to a given assessment, the user can decide upon faster delivery
of results or lower infrastructure costs.

The proposed software framework has been used to solve a complex real-world optimization
problem of a subsurface rock mass model calibration. The results obtained from the private OpenStack
deployment show that by using the proposed decision support engine, significant savings can be
achieved in both optimization time and optimization cost.

© 2019 Published by Elsevier B.V.

1. Introduction1

Cloud computing has shown a great deal of promise as a scal-2

able and cost-effective computing model for supporting scientific3
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applications [1–3]. Until recently, scientists and engineers have 4

used supercomputers, HPC clusters or computing grids to execute 5

applications that require a large amount of resources to solve 6

complex problems. Now, Cloud [4] offers a pay-as-you-go com- 7

puting environment for the execution of largescale applications 8

at low costs and without the need for owning any computing 9

infrastructure. 10
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One of the domains that can certainly benefit from employ-1

ing cloud resources is optimization based on evolutionary al-2

gorithms. Evolutionary algorithms (EAs) are a population-based3

metaheuristic inspired by the survival of the fittest principle,4

whose use has become increasingly popular over the last three5

decades, mainly for real-world large-scale optimization and clas-6

sification tasks. Some of the most popular EAs are genetic al-7

gorithms (GAs) [5]. A GA involves thousands of objective func-8

tion evaluations, which in the case of a real-world problem can9

be quite time-consuming, and may take days, weeks or even10

months for the GA to find an acceptable solution. Speeding up11

the optimization process is achieved by parallelization of the12

GA [6], which reduces the resolution times to reasonable levels.13

An implementation of parallel metaheuristics has previously been14

mainly realized using HPC clusters, computing grids and volun-15

teer peer-to-peer systems [7–10]. Unfortunately, most individuals16

and institutions that want to employ evolutionary optimization to17

solve real-world problems do not have the access to these types18

of resources and/or do not possess the expertise necessary for19

their use, which makes it impossible for them to obtain feasible20

results within a reasonable time frame. Additionally, many of21

those in need of optimization do not need to perform it on a daily,22

or even monthly basis, and therefore investing in an expensive23

HPC cluster and its further maintenance would be completely24

unacceptable to them. Recent availability of Cloud on-demand25

massive computing resources offers new opportunities for the26

development of the optimization frameworks based on parallel27

EAs. Cloud services enable provisioning of resources beyond what28

is available in most research labs, allowing implementation of29

parallel metaheuristics at reasonable prices. An infrastructure is30

fully operated by the cloud provider, which completely eliminates31

the cost of equipment purchase. An additional benefit from Cloud32

exploitation is that hardware maintenance and support are trans-33

ferred to the provider. The utilization of the cloud computing34

power makes a large-scale optimization available to a signifi-35

cantly wider range of users. Offering a cloud-based optimization36

service can make them capable to introduce parallel metaheuris-37

tics procedures, regardless of their financial, technological or38

knowledge level.39

The aim of this paper is to present the latest development40

advances within the WoBinGO software framework [10]. In recent41

years, WoBinGO has been used for solving large-scale real-world42

optimization problems over heterogeneous computing resources,43

including HPC clusters and Grids. Examples of its successful uti-44

lization range from portfolio optimization [11], to near real-time45

adjustment of artificial neural network architecture in a dam46

health monitoring system [12]. However, since only large com-47

panies and research institutions can afford private computing48

infrastructure for employing WoBinGO, we have decided to up-49

grade WoBinGO in order to make use of private and public50

cloud infrastructures compatible with EC2 API, thus allowing51

large-scale optimization at reasonable prices. We built a set of52

supporting services for WoBinGO with an inherent capability of53

automatically launching and maintaining the pool of full-stack54

cloud instances. The advances to the framework were introduced55

to meet the following requirements:56

• Speeding up the optimization process by parallelization of57

GA and employing multiple computing instances in the58

Cloud for evaluation of the individuals.59

• Relieving the researcher burden of obtaining cloud resources60

and dealing with various provider APIs.61

• Maintaining the pool of ready computing instances to enable62

their fast allocation and avoid waiting until requests for63

computing resources are processed by the provider.64

• Elastic provisioning of resources in accordance with the dy- 65

namics of the users’ requests, thus eliminating unnecessary 66

costs and reducing energy consumption. 67

• Providing an intelligent, machine-learning based decision 68

support engine for determining the optimal cloud instance 69

parameters to achieve the best performance to IaaS con- 70

sumption ratio. 71

There are two major issues to be considered when dealing 72

with large-scale optimization in the elastic cloud environment. 73

The first issue comes from the fact that a computing instance 74

launching overhead is considerably higher compared to a launch- 75

ing overhead of a simple batch job in the HPC cluster queue. In 76

further text, we will assess the usability limits of the WoBinGO 77

framework running within the IaaS environment. The second 78

issue to be considered is the price of optimization task execution 79

in terms of computing instances’ cumulative uptime. Discussing 80

the cost of solving the hard optimization problem was not at all 81

in the focus of [10], while the aim of this paper is to show that it 82

is possible to provide a reliable mechanism to minimize both the 83

total optimization time and optimization cost. 84

The distinctive feature of WoBinGO, as shown in [10], is the 85

limited lifetime of worker jobs. When that time is about to expire, 86

despite there being more evaluation work to be done, the system 87

removes the current job and submits an appropriate number of 88

new jobs according to the recent load. In terms of WoBinGO’s 89

cloud implementation, the workers performing evaluations are 90

actually cloud instances. Therefore, the lifetime parameter affects 91

a system inertia by controlling the uptime of each computing 92

instance and, as we will show later in the manuscript, directly 93

influences the cost of the acquired computing power. By adjusting 94

the lifetime value, according to the requirements of a specific 95

optimization task, it is possible to achieve savings in overall 96

duration and cost of the optimization process. 97

In addition to lifetime, the factor that mostly contributes to 98

performance is the maximum number of engaged computing 99

instances. It can also be adjusted to influence the total opti- 100

mization time and cost. The ideal combination of lifetime and 101

a maximum number of workers for a certain optimization task 102

depends on the performance of the underlying IaaS infrastructure, 103

the mean evaluation time of the individual and the number of 104

individuals within a population. Special attention was devoted 105

to determining the optimal combination of lifetime and maxi- 106

mum number of workers for the optimization problem at hand, 107

such that the total optimization time and cost are both minimal. 108

Enhancing the user’s QoS, we developed an intelligent decision 109

support engine which uses machine learning and historical data 110

to model the behavior of the underlying infrastructure under 111

various load patterns. Subsequently, a user is provided with the 112

optimal combination of an instance lifetime and the maximum 113

number of instances to achieve the best performance to resource 114

(and consequently energy) consumption ratio. As shown by the 115

results of the conducted experiments, by using the proposed 116

decision support engine, it is possible to significantly decrease 117

IaaS cost, while keeping the same total optimization time. 118

The rest of the paper is organized as follows: in Section 2, we 119

review the related work. A description of the framework is given 120

in Section 3. In Section 4, the experimental results and discus- 121

sion are given, along with a case study, followed by concluding 122

remarks in the last section. 123

2. Related work 124

Over the past few years, porting the execution of parallel 125

metaheuristics to Cloud has gained the growing attention of the 126

scientific community. Probably the first example of integration of 127

EAs with Cloud is found in [13]. The Offspring framework provides 128
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support for researchers of combinatorial optimization in quickly1

deploying their algorithms on a distributed computing infrastruc-2

ture. The framework relies on Aneka [14,15] to distribute multi-3

objective evolutionary algorithms on Enterprise Clouds. The dis-4

tribution model of Offspring has been implemented on top of the5

task model with a plugin architecture. The other example of Cloud6

usage in evolutionary computation can be found in [16], which7

advances the contribution of [17], and presents a distributed evo-8

lutionary computation system that relies on two different cloud9

storage services (Dropbox and SugarSync) for the file synchro-10

nization among islands, while each island is hosted by a different11

computer.12

Building upon the concept presented in [18] and [19], the13

authors in [20] introduce the EvoSpace population storage model14

for the development of pool-based EAs that can be executed over15

cloud computing resources. The evolving population is stored in16

a centralized repository, while distributed clients asynchronously17

extract a subset of individuals and return a new subset of individ-18

uals after performing the search operators. EvoSpace is configured19

to run on a cloud architecture using Heroku for the EvoSpace20

server and PiCloud for simulating EvoWorkers. The study shows21

how EAs can scale on Cloud and how Cloud can make EAs effec-22

tive in a real-world environment, speeding up the running time23

and lowering the costs. This concept is to some extent similar to24

our work, in terms that workers are autonomous computational25

entities which only communicate with the EvoStore and not with26

each other. However, an important drawback is related to a27

researcher’s tools: in Heroku only certain versions of languages28

are currently supported and only a certain number of services are29

available as Add-Ons; in PiCloud the integration with Python is30

transparent, but other languages or binaries need to be deployed31

to customizable environments.32

In [21] the authors analyse research projects and important33

requirements in the context of optimization services, and of-34

fer the definition of a reference architecture for cloud-based35

optimization services. The authors also provide the prototype36

of a cloud-based optimization service (OaaS), which originates37

from their previous work [22] where it was initially presented.38

OaaS HeuristicLab HIVE defines a generic and extensible service39

which can be adapted to support custom optimization scenar-40

ios. The service is based on the Microsoft .NET framework, and41

therefore intended only for the Windows Azure cloud provider,42

subsequently using a Microsoft solution for automatic scaling43

of computational resources, which makes it highly platform de-44

pendent. Additionally, it requires users to establish a computing45

infrastructure on their own.46

The authors of [23] introduce a SPACE web-based framework47

for distributing expensive fitness evaluations across an elastic,48

heterogeneous pool of computing nodes that include both the49

personal computers of users/volunteers running JavaScript soft-50

ware in their web browsers as well as a variable sized pool of51

cloud computing nodes running an optimized C++ version of the52

software.53

Frameworks presented in [23] and [21] have the advantage54

over other solutions in that they enable concurrent execution of55

multiple different experiments, initiated by different users, on the56

same network. Other solutions (as they are implemented now) do57

not offer this opportunity, because they host the population on a58

central server and therefore would require a separate server for59

each concurrent experiment.60

With the aim of parallelizing GAs on a commercial cloud61

environment and in a DevOps fashion, paper [24] presents a novel62

approach to distribute GAs, implementing the global paralleliza-63

tion model and exploiting technologies specifically devised for64

Cloud (i.e., Docker, CoreOS and RabbitMQ). However, there is no65

empirical assessment of the effectiveness of such system in terms66

of execution time and scalability, when solving a real problem.67

Numerous authors have suggested using the MapReduce 68

paradigm for parallelization of EAs over a cloud infrastructure, in 69

order to relieve programmers of most of the distributed compu- 70

tation issues. An additional motivation for the use of this model 71

stems from the fact that it is natively supported by several cloud 72

infrastructures. In [25] authors utilize Cloud to execute parallel 73

genetic algorithm (PGA) for the purpose of automated software 74

testing. Three different models of PGA were adapted to the 75

MapReduce paradigm and issues and concerns about them were 76

discussed. Paper [26] provides a comprehensive analysis and a 77

comparison of the three PGA models in terms of execution time, 78

speedup, overhead and computational effort. To realise the PGAs, 79

the authors exploited the elephant56 framework [27], which is 80

an open source project offering the possibility of distributing 81

the GA’s computation over a Hadoop MapReduce. The cost es- 82

timation of the execution on a potential cloud infrastructure is 83

also considered, and the results suggest that the island model is 84

worth using compared to the execution with a single machine. 85

Although the conducted benchmark is comprehensive, the results 86

would probably be significantly better if a considerably faster 87

Spark MapReduce was employed instead of the IO heavy Hadoop 88

MapReduce. 89

There are a number of survey papers [28–31] that classify 90

elasticity in a cloud environment. Aforementioned HeuristicLab 91

HIVE [21], EvoSpace [20] and Aneka [15], use elasticity for in- 92

creasing the local resources’ capacity. According to classification 93

for elasticity mechanisms found in [32], WoBinGO employs an 94

automatic reactive elasticity policy through replication, which 95

consists of adding and removing virtual machine instances from 96

the infrastructure. The elasticity controller is embedded within 97

the framework itself in order to automatically manage the re- 98

sources used by the application, as in [15]. The elasticity is used 99

to avoid the inadequate provision of resources and consequently 100

reduce the cost of cloud resources’ exploitation. In [33], the au- 101

thors report more general approach in providing fully automatic 102

elasticity for standard HPC workloads migrating to the Cloud, 103

considering both performance, cost and energy consumption. If 104

referring to the Zhan’s [30] taxonomy of a cloud resource schedul- 105

ing, one can say that WoBinGO performs scheduling resources in 106

the application layer for user QoS including cost and performance. 107

The general conclusion of all the above mentioned works is 108

that unless for toy examples, Cloud execution of parallel EAs 109

greatly exceeds the performance of a local server. However, none 110

of these solutions offer elasticity in the allocation of cloud re- 111

sources, or enable users to adjust a framework’s parameters in 112

accordance with their preferences in regards to the total op- 113

timization time and cost of solving the particular optimization 114

problem. 115

3. WoBinGO in the cloud 116

WoBinGO framework has recently been successfully used for 117

solving hard real-world optimization problems. It has been im- 118

proved to enable fully automated execution of EA based op- 119

timization on IaaS, in addition to the standard HPC base. The 120

principles upon which the WoBinGO was created have stayed the 121

same, and all the benefits that the framework previously provided 122

by engaging Work Binder (WB in further text) service [34] are 123

still there. These benefits include fully automatic allocation of 124

the computing resources, quick client-worker binding by elastic 125

maintenance of the pool of ready workers, etc. [10]. From the 126

users’ point of view, porting the framework to the Cloud induced 127

the following features: 128

• SaaS (Software as a Service) based optimization software al- 129

lows the optimization methods to be exposed as an Internet 130

service. 131
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Fig. 1. WoBinGO cloud-based architecture.

• Speeding up the optimization process by employing multi-1

ple cloud instances for the evaluation of the individuals in2

PGA.3

• Pool of ready cloud instances is elastically maintained in4

accordance with the dynamics of the users’ requests. In this5

way unnecessary costs are avoided and energy consumption6

is reduced.7

• Worker instances with limited lifetime ensure frugal utiliza-8

tion of the computing resources, resulting in cost savings9

and minimal energy consumption.10

• Objective function can be written in any compiled or script11

language supported by an underlying OS/runtime environ-12

ment.13

3.1. Architecture14

The architecture of the optimization framework remained in-15

tact from [10], with the addition of the possibility to automati-16

cally launch full stack virtual instances besides standard batching17

and grid jobs. The framework employs standard EC2 API to man-18

age compute instances, which is compatible with a large number19

of IaaS providers. Another change was the location of the ob-20

jective function evaluator, which now resides within the object21

storage service.22

The basic structure of the framework is illustrated in Fig. 1.23

The framework consists of the optimization master and the dis-24

tributed evaluation system based on WB. The distributed eval-25

uation system is composed of the evaluation pool and the WB26

subsystem.27

The master performs the main evolutionary loop to the point28

when a generation has to be evaluated. At that moment, the29

master sends all individuals in a generation to the evaluation30

pool, waiting for the results. After all individuals from a gener-31

ation have been evaluated, the master proceeds with the rest of32

the evolutionary algorithm until the stopping criteria is reached.33

The evaluation pool acts as an intermediate layer between the34

master and the WB service. It provides asynchronous parallel35

evaluation of individuals. The WB part consists of software com-36

ponents distributed in three tiers: the client, the worker VM37

instances, and the WB service. The purpose of the WB service is38

to maintain the pool of ready instances and to bind them with 39

clients that request evaluation. It launches an appropriate number 40

of worker instances in order to satisfy incoming requests. The 41

client establishes a connection to the WB service and requests 42

a worker. As soon as the client and instance are successfully 43

coupled, the WB service acts as a simple proxy. After completing 44

the evaluation, provided that its lifetime did not expire, the VM 45

instance reconnects to the WB service asking for more work. Each 46

GA-based optimization process requires an evaluator of objective 47

function(s), which has to be supplied in the form of a bundle. 48

The communication interface is simple: the evaluator executable 49

has to take an input.xml that contains types and values of the 50

parameters and has to produce an output.xml that carries ob- 51

jective function values. Upon the start, each computing instance 52

downloads evaluator bundle(s) from the object storage using 53

cloud-init [35] and informs the WB service about the willingness 54

to perform evaluations. The bundle can be supplied in the form 55

of an archive, or a Docker image in the case of more complex 56

dependencies. 57

3.2. Parameters that affect the optimization performance 58

The shortest optimization execution time is achieved by the 59

fully static approach, meaning a separate VM instance is en- 60

gaged for the evaluation of each individual in the generation 61

and all worker instances are active throughout the whole opti- 62

mization process. This scenario is generally not always possible 63

in a public cloud, due to the fact that currently public cloud 64

providers imply strict limits regarding the amount of resources 65

that can be given to a user at once. For example, Amazon allows 66

normal users to request simultaneously only 20 on-demand in- 67

stances and 100 spot instances per region. Additionally, even if 68

it was always possible to perform one-to-one mapping between 69

individuals in the population and the computing instances, the 70

cost-effectiveness of such an approach would be questionable. In 71

fact, when solving real-world optimization problems, the evalu- 72

ation time often varies greatly from individual to individual. For 73

example, in optimization based on simulation with an adaptive 74

time step, the evaluation of some solutions can last much longer 75

than the evaluation of the rest of the population. Therefore, most 76

of the engaged instances would complete assigned evaluations 77

and then idly wait for the remaining few to complete their work, 78

which causes unnecessary cost. Another scenario in which the 79

idle worker instances are encountered occurs when the size of the 80

population is not divisible by the current number of computing 81

instances. In this case, a certain number of instances will be 82

idle, until the evaluation of the remaining individuals completes. 83

The existence of idle instances indicates the possibility of reduc- 84

ing the number of deployed instances without deteriorating the 85

optimization performance. 86

With WoBinGO, the problem of idle worker instances is as- 87

sessed by using the inherent elasticity of Work Binder (WB) 88

service [34]. As explained in [10], WB is capable of utilizing 89

underlying infrastructure elastically in accordance with resource 90

availability and the present workload. An instance has a defined 91

maximum lifetime L which is determined by a tuple (rmax, tidle). 92

The parameter rmax represents the maximum number of evalua- 93

tions that a worker instance can perform during its lifetime, while 94

tidle is the time that an instance is allowed to spend in the idle 95

state. If a worker has performed as many evaluations as specified 96

by rmax or has not been given an individual to evaluate for tidle, 97

its lifetime is considered expired. After an instance completes its 98

lifetime, it is turned off, regardless of whether there are more 99

individuals to evaluate or not. If necessary, WB will activate new 100

instances on the basis of an analysis of incoming client requests 101

to replace those that have shut-off. 102



FUTURE: 5095

Please cite this article as: V. Simic, B. Stojanovic and M. Ivanovic, Optimizing the performance of optimization in the cloud environment–An intelligent auto-scaling
approach, Future Generation Computer Systems (2019), https://doi.org/10.1016/j.future.2019.07.042.

V. Simic, B. Stojanovic and M. Ivanovic / Future Generation Computer Systems xxx (xxxx) xxx 5

In WoBinGO’s cluster/grid deployment, the worker job’s lim-1

ited lifetime provided friendliness towards other batching queue2

users and enabled them to reach a running state significantly3

faster compared to a static pilot-job approach. However, in terms4

of IaaS, the workers performing evaluations are cloud instances,5

while the lifetime parameter affects the elasticity inertia by con-6

trolling the uptime of each worker instance. The lower value of7

lifetime reduces the inertness of the system when the number8

of workers needs to be scaled down. At the same time, the9

system becomes more inert when it needs to increase the number10

of workers, since lower value of lifetime means more frequent11

instance on/off switching.12

On the other hand, in the case of a long lifetime, the WB has13

at its disposal a larger number of ready worker instances and14

can quickly handle sudden rush of tasks, such as when start-15

ing the evaluation of the generation. However, the idle periods16

cost money and consume energy. In the case when we do not17

want to keep the idle instances, we must accept the overhead18

when raising new instances. Thus, by controlling the value of19

the lifetime, one can reduce the overall optimization time, but20

also the cumulative uptime of engaged worker instances and,21

consequently, the optimization task cost.22

The total optimization time depends directly on the opti-
mization problem itself defined by the population size, number
of generations, and the average evaluation time of an individ-
ual on a certain type of cloud instance. Theoretically, ideal to-
tal optimization time and ideal cumulative uptime of engaged
worker instances for a particular task (denoted as T ∗

opt and T ∗
cum,

respectively) can be calculated as:

T ∗

opt =

(
teval ·

⌈
N

Wmax

⌉
+ tseq

)
· G, (1)

T ∗

cum = T ∗

opt · Wmax (2)

where teval is an average evaluation time of an individual, N is the23

number of individuals in the population, Wmax is the maximum24

number of VM instances used for performing evaluations, and25

G is the number of generations to be evaluated. In an ideal26

scenario, when a population can be distributed among workers27

evenly, each worker evaluates the same number of individuals28

(N/Wmax), spending teval for each of them throughout G gener-29

ations. Additionally, the time required for the execution of the30

sequential part of the algorithm (tseq) must be taken into account31

for each generation. When a population size is not divisible by the32

maximum number of workers, the remainder of the individuals33

will be evaluated for additional teval in each generation.34

3.3. Decision support engine35

In order to improve QoS, we decided to expand WoBinGO36

with a predictive decision support engine. It provides end users37

with an assessment of the framework’s behavior on the specific38

underlying infrastructure in terms of Pareto optimal combina-39

tions of the total time required to complete optimization, and40

the cost of resource consumption during that period. According41

to a given assessment, a user can further select one of three42

possible options: (i) to sacrifice time to save money; (ii) to pay43

more to get the results as soon as possible or (iii) to achieve a44

balance between the cost and the optimization time. As stated45

above, the total optimization time and total uptime on the IaaS46

platform can be influenced by adjusting the lifetime and the47

maximum number of engaged instances. Therefore, minimizing48

both execution time and cost of the optimization process is a49

multiobjective optimization problem with two decision variables:50

L andWmax. The total optimization time and cumulative instances’51

uptime are also largely influenced by the overall performance52

Fig. 2. The decision support engine workflow.

of an underlying infrastructure. There are various indicators of 53

the performance of a certain IaaS provider, such as an instance 54

boot and shutdown time, oversubscription rate, instance creation 55

time, network latency, network throughput, object and block 56

storage performance, etc. If we could determine how all these 57

infrastructure factors cumulatively affect the total optimization 58

time and the total uptime for a specific optimization problem, 59

then we could reduce both of them. However, since relations 60

among the quantities involved in the decision process are too 61

complex to be modeled using a physically based model, the most 62

effective way to estimate a solution is to build a surrogate model 63

of IaaS performance under an optimization load by employing 64

machine learning and historical data from previously performed 65

optimizations. 66

Two surrogate models were built to estimate an infrastructure 67

response to various combinations of L and Wmax for the specific 68

optimization task. Both surrogate models have the following in- 69

puts (Fig. 2): tidle, rmax, teval, N , G, Wmax, where tidle and rmax are 70

constitutive parts of the L tuple, as defined above. Output from 71

the first model is the total optimization time and the second 72

model outputs the cumulative uptime. The models were built 73

using Artificial Neural Networks (ANNs). Given the previous his- 74

torical data, two fully-connected neural networks were trained 75

using the back-propagation algorithm. The first ANN is used to 76

predict the total optimization time Topt and the other ANN to 77

predict the total cumulative uptime of the worker instances Tcum. 78

As depicted in Fig. 2, the built surrogate models of the in- 79

frastructure behavior act as objective functions evaluators in the 80

process of determining optimal (L, Wmax) combinations. The opti- 81

mization is performed within the decision support engine using 82

multi-objective GA (MOGA). After the initial population of solu- 83

tions was randomly generated, it undergoes the evaluation using 84

the infrastructure’s surrogate models. The population is then 85

subjected to the iterative process of selection, crossover, mutation 86

and evaluation. The iterative process is terminated when solu- 87

tions of satisfactory quality are obtained or when the maximum 88

number of iterations is reached. After the execution of MOGA, 89

the decision support engine produces an output in the form of 90

a Pareto front showing possible trade-offs between Topt and Tcum 91

for different combinations of L and Wmax. 92

3.4. The system implementation 93

The software system as implemented on the underlying Open- 94

Stack installation is depicted in Fig. 3. The decision support engine 95

is a hybrid neuro-evolutionary system, but from the user’s point 96

of view it represents a black box. A user supplies the system 97

with an optimization problem definition (Step 1) through the 98
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Fig. 3. The implementation of the proposed optimization system. The user supplies the optimization problem through the Web Portal, while the Decision support
engine helps him choose the best worker instance parameters to perform the supplied optimization task. The optimization itself is carried out by WoBinGO framework
which maintains the pool of worker instances on Openstack.

web portal. Amongst other parameters, the definition includes a1

population size (N), the maximum number of generations in GA2

(G) and an objective function evaluator. To determine the average3

teval, the system executes several trial evaluations of randomly4

generated individuals on a target type computing instance (Step5

2). Upon obtaining teval, the decision support engine executes6

MOGA, and determines the optimal combinations of a computing7

instance’s L and Wmax (Step 3). They are given in the form of8

Pareto optimal solutions in regards to Topt and Tcum (Step 4). A9

user can choose a single solution according to his preferences -10

faster optimization process, or lower cost, or some kind of balance11

between the two. The chosen values of L and Wmax are further12

passed to WoBinGO (Step 5) to be used for the optimization13

problem described by a user (Step 6). WoBinGO performs the14

optimization process as described in [10], with the difference15

that instead of HPC batching jobs, worker instances are used for16

evaluations of individuals. The final result (Step 7) is a solution17

to a user’s optimization problem, delivered in the minimum time18

and at lowest price possible, regarding the user’s preferences.19

Upon each optimization, the system logs the data in the form of20

tuples (N , G, teval,Wmax, rmax, tidle, Topt , Tcum) into the database (Step21

8) and periodically retrains the surrogate models of infrastructure22

behavior in accordance with the enriched data set (Step 9).23

It should be emphasized that, when an approximate model24

of infrastructure behavior is used for objective function evalua-25

tion within the decision support engine, a false optima can be26

encountered [36]. More precisely, the parametric approximation27

technique may not be capable of modeling the problem land-28

scapes accurately, and can thus produce an unreliable search.29

There is no unique approach to prevent convergence to a false op-30

timum. In this implementation we employed our own approach31

based on the assessment of ideal optimization time (T ∗
opt ) and32

ideal cumulative uptime (T ∗
cum) of VM instances, using Eqs. (1) and33

(2). When an individual in a population contains Topt and/or Tcum34

values that are better than ideal, it is automatically punished with35

suitably harsh fitness values for both objectives. This way, not36

only an individual with parameters leading to false optimum is37

punished, but the MOGA itself is ‘‘diverted’’ from the area which38

leads to the obvious false minima.39

4. Empirical study40

When employed over HPC clusters and grids, WoBinGo frame-41

work provided significant speed-up for optimizations that have42

computationally expensive evaluations, despite its adaptive and43

frugal allocation of the computing resources, as reported in [10].44

Upon implementing the framework on the Cloud, our first aim45

was to determine to what extent WB’s auto-scaling affected the46

pure performance in terms of the optimization time, considering 47

a significantly higher infrastructure overhead compared to an 48

HPC cluster. Secondly, we focused on demonstrating the influence 49

of the instances’ lifetime on the total optimization time and the 50

cumulative uptime of the instance engagement. 51

Further in this section, we considered the building blocks 52

needed to build the decision support engine. The main compo- 53

nents of the decision support engine are the surrogate models 54

of the infrastructure behavior under various optimization loads, 55

whose performance is thoroughly discussed. The last experiment 56

presented in this section was intended to test our software sys- 57

tem through a case study in regards to a real-world optimization 58

problem. The goal was to examine whether the use of the Pareto 59

optimal solution suggested by the engine brings savings, either in 60

terms of optimization time or optimization cost. 61

4.1. The performance of pure WoBinGO on IaaS 62

To accomplish the first objective, we carried out benchmarks 63

with the aim of comparing (i) WoBinGO on the IaaS with a static 64

number of worker instances and (ii) WoBinGO on the IaaS with 65

its inherent elastic behavior. In the first benchmark, we consider 66

the performance only in terms of total optimization time and 67

achieved speedup. 68

Using a simple GA with real-encoded chromosomes we solved 69

the artificial test problem. The fitness function was a dummy 70

function that did nothing except receive an individual, sleep for 71

n seconds, and return a random fitness value to the master. For 72

the purpose of this study, it only mattered how long it took the 73

instances to return their responses. The simple GA was executed 74

for 10 generations and the results reported are the average of 10 75

independent runs. 76

To execute the experiment, we employed a private IaaS in- 77

frastructure based on OpenStack Juno hosted on Ubuntu 16.04 78

x86_64 deployed on 4 physical servers with Intel Xeon E5-2620 79

v2 CPUs, totalling to 96 cores, 128 GB memory and a gigabit 80

interconnection. All VM instance images were also Ubuntu 16.04. 81

In order to perform a fair experiment, we used the same config- 82

uration for each instance (see Table 1). It is worth noting that we 83

did not simulate any hardware component, thus exploiting the 84

virtualization of OpenStack only as a way to equally decompose 85

the underlying hardware infrastructure. We completely dedicated 86

the partial atomic resource (e.g., CPU cores, RAM) to the run- 87

ning instances so that they could have fully used them without 88

overlapping with others. 89

The WoBinGO setup on the OpenStack closely mimics the way 90

the framework is used within the standard HPC environment. The 91

only crucial difference is the usage of worker instances instead 92
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Fig. 4. Infrastructure overhead: (a) comparative display of the experimentally obtained wall-clock time for various launching policies of the instances; the ratio
between the actual computational time and the overhead for different values of the lifetime (b) L = (50, 300), (c) L = (150, 300) and (d) the static run.

Table 1
Virtual machines’ configuration.
Hardware Software

Feature Value Feature Value

Architecture 64 bit OS Ubuntu 16.04
CPUs 1 Java 1.8
RAM 2 GB Mono 5.10.0.160
Storage 10 GB

of HPC batching jobs. The WB service (Fig. 1) is hosted on a1

separate instance which is capable to invoke OpenStack (mostly2

Nova) services using RESTful interface. It also exposes a NFS3

shared home, mimicking standard HPC setup. As soon as the WB4

service notices the current pool of ready workers is insufficient,5

it initiates a new worker instance. Then one of the following two6

cases may occur: (existing) there is a worker instance already7

available, and (from-scratch) there are no more worker instances8

available. In the first case, the WB service just switches an in-9

stance on, and the launched instance mounts NFS shared home,10

downloads the evaluator bundle from the object storage (Swift)11

and announces its readiness to perform evaluations. In the second12

case, prior to starting the worker instance up, we have to create13

it from the image (Glance service), call cloud-init to create a user,14

install necessary packages, and deploy WB components. Upon15

launch, the worker instance created from the image announces its16

readiness to perform evaluations to the WB service. The worker17

instance lives as long as prescribed by the lifetime (denoted as L18

above). When time expires, it automatically turns off.19

The maximum number of worker instances (Wmax) was set to20

40. The estimated average period required for the sequential part21

of the algorithm was tseq = 2 s. The expected execution time was:22

23

Tpar = tseq +
n · teval

p
+ O(n, p), (3)24

where p is the average number of worker instances that per-25

formed evaluation of n = N ·G individuals and teval is the average26

Fig. 5. Speed-up curve.

time needed to evaluate a single individual. O(n, p) represents the 27

total overhead including instance creation (only if it has to be cre- 28

ated from the image), its launch, boot sequence, communication, 29

etc. The time required for solving the same optimization problem 30

in serial Tser can be expressed as: 31

Tser = tseq + n · teval. (4) 32

In order to achieve any speed-up, the following must hold: Tser > 33

Tpar . Combining Eqs. (3) and (4) leads to: 34

teval >
p̄

n(p̄ − 1)
· O(n, p̄) (5) 35

The Eq. (5) specifies the profitability limit saying that it is worth- 36

while to use WoBinGO only when condition Eq. (5) is satisfied. 37

Due to the proportionally higher launch overhead in IaaS than 38

with a simple batch job submission, we expected higher prof- 39

itability limit of teval compared to a HPC cluster run [10]. The 40

diagram in Fig. 4a gives a comparative display of the experimen- 41

tally obtained wall-clock time needed to evolve 10 generations of 42

40 individuals with 40 worker instances performing evaluations 43

for the following cases: (from-scratch) auto-scaling of limited 44
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Fig. 6. Impact of the lifetime parameter on the total cumulative uptime.

lifetime worker instances created from the image; (existing) auto-1

scaling of already existing worker instances with limited lifetime;2

(static) all worker instances stay active throughout the whole op-3

timization process. The static run was undoubtedly the fastest as4

it emulates the ideal setup, followed by a case that uses existing5

worker instances. The run which involved building instances from6

the image performed the worst, but the overhead was constant7

and predictable. In our test run, the overheads compared to the8

static run were 110 s for existing worker instances and 200 s9

for instances that had to be created from the image. Speaking10

in relative terms, in the case of the evaluation that lasted 120 s,11

the cost of the infrastructure overhead was approximately equal12

to a period necessary to evaluate one generation within the GA13

process. Having a sufficient amount of log data, these numbers14

could be easily estimated for each cloud provider, but this es-15

timation is out of scope of this paper. In order to demonstrate16

the consistency of the overhead, we assessed the relationship17

between the execution time in static scenario compared to the18

scenarios with instances created from the image and with exist-19

ing worker instances. The Pearson correlation coefficient ranges20

between 0.98 and 0.99, proving that the contribution of any type21

of IaaS overhead to the optimization time is mostly constant.22

Further, we examined the ratio between the actual computa-23

tional time and the overhead for different values of the lifetime24

and compared it to the static run used as a reference. Fig. 4b and c25

show results for two versions of the elastic approach which differ26

only in lifetime values. The static run (Fig. 4d) exhibits a much27

smaller overhead when compared to the elastic ones (Fig. 4b28

and c). It is also apparent that the overhead decreases with the29

increase of lifetime for the reasons discussed in Section 3.2.30

The overheads are quite significant for short evaluation times,31

as was the case with the WoBinGO’s grid deployment (reported32

in [10]). This is due to the fact that in the case of problems33

with a relatively short fitness evaluation, the frequency of client34

and worker requests addressed to the WB service is higher than35

with longer fitness evaluations. A higher frequency implies longer36

waiting for the requests’ fulfilment. For evaluation times over37

10 s, as can be noticed in Fig. 4(b), (c) and (d), the overhead was38

constant regardless of the evaluation time. Thus, in the case of39

cloud deployment, the profitability limit for evaluation time turns40

out to be 10 s in contrast to the 5 s limit for the HPC cluster41

deployment that was reported in [10].42

Once we obtained the execution times and overhead involved43

with the WB’s auto-scaling approach, we calculated the speedup44

by dividing the total amount of time required for sequential45

execution of the optimization algorithm by the amount of time46

required by the PGA. We compared the achieved speed-up with47

the ideal speed-up (number of employed parallel workers) (Fig. 5)48

In the case of more time consuming evaluations, the speed-up ap-49

proaches the ideal value, and for short evaluations, the speed-up50

is poor, because of the overhead discussed above.51

The presented empirical results prove that the WB’s auto-52

scaling does not affect the system’s performance significantly,53

especially in the cases of problems with computationally expen- 54

sive evaluations, which are common in real-world applications, 55

such as simulation-based optimizations. 56

4.2. The impact of instance lifetime 57

The performance was not the only factor that had to be taken 58

into account when dealing with a large-scale optimization in a 59

cloud environment. The cumulative uptime of the instances (Tcum) 60

which contributed to the evaluation process was also a significant 61

factor, since it directly influences the cost of the optimization, 62

together with the IaaS provider payment policy. Therefore, the 63

second set of experiments that were carried out were aimed 64

at demonstrating how adjusting the worker instance lifetime 65

affects Tcum and, consequently, the cost. The results are presented 66

in Fig. 6. As can be seen from both diagrams, the lifetime has 67

a significant impact on the total cumulative time of computing 68

instances’ engagement. However, it is obvious that the relation 69

between lifetime, number of individuals, number of workers and 70

evaluation time on one side and total uptime on the other side is 71

complex, and this is exactly the reason why we had to employ a 72

surrogate prediction models. 73

Having the uptime data, it was possible to carry out a cost– 74

benefit analysis that compares the computational benefit to the 75

cost of running evaluations on the cloud infrastructure (both in 76

terms of time). We calculated WoBinGO’s cost efficiency using the 77

following equation: 78

ϵ =
Tc
Tcum

, (6) 79

where Tc = teval · N · G denotes pure computational time. The 80

ideal value of ϵ is 1, which means that instances were utilized 81

all the time during the optimization process. It is apparent from 82

the resulting diagrams (Fig. 7) that with the increase of an indi- 83

vidual evaluation time (teval) our system becomes more efficient. 84

However, the efficiency is obviously non-linearly dependent on 85

worker instance lifetime. For various combinations of the evalua- 86

tion time teval, the number of individuals N , and the maximum 87

number of workers (Wmax), the lifetime L influences the cost 88

efficiency in a different way. 89

4.3. Training of the surrogate models with the historical data 90

The surrogate models of the infrastructure behaviour under 91

the optimization load were constructed using two artificial neural 92

networks. The first ANN estimated the overall duration of the 93

optimization process, and the second ANN was used for the 94

assessment of the total cumulative time of computing instances’ 95

engagement (Fig. 2). The training of the ANNs was performed 96

using historical data in regards to Topt and Tcum that were gathered 97

through WoBinGO’s elasticity testing. The gathered historical data 98

counted 221 records and was split into training and test sets, with 99

a split ratio of 80% and 20%, respectively. 100
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Fig. 7. Cost efficiency.

Table 2
Comparison of prediction accuracy between ANN and SVR surrogate models.
Measurement ANN SVR

Topt Tcum Topt Tcum
RMSE [h : mm] 0:05 1:16 0:09 1:54
RAE 0.14 0.09 0.22 0.13
R-squared 0.98 0.99 0.93 0.98

For the ANNs’ implementation, we used Keras library inter-1

faced to R-Project [37]. Both ANNs consisted of 5 neurons at the2

input layer, one neuron at the output layer, and two hidden3

layers with 20 neurons each. The number of neurons in the4

hidden layers was selected empirically. The input vector x =5

(L,Wmax, teval,N,G) was identical for both ANNs. The output of6

the first ANN was the total optimization time Topt , and the output7

of the second ANN was the total uptime of all engaged VMs (Tcum).8

The resilient backpropagation learning algorithm was used, with9

a learning rate of 10−3.10

Additionally, we developed the prediction models of WoB-11

inGO’s behaviour using the Support Vector Regression (SVR) ap-12

proach and compared their prediction accuracy with ANN mod-13

els’. To evaluate the accuracy of the fitted models the following14

metrics were used:15

• Root mean square error:16

RMSE =

√∑n
i=1(ŷi − yi)2

n
(7)17

• Relative absolute error18

RAE =

∑n
i=1 |ŷi − yi|∑n
i=1 |ȳ − yi|

(8)19

• R-squared (R2) prediction accuracy20

R2
= 1 −

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(9)21

where yi denotes the actual output, ŷi is the predicted output, ȳ is22

the mean of actual outputs and n is the number of observations in23

the dataset. The results of applied statistical measures are shown24

in Table 2.25

From Table 2, it can be seen that all of the results go in favor of26

ANN prediction models. Regarding ANN accuracy measurements27

results, the RMSE for Topt , was approximately 5min, which makes28

3% of the full range. The RMSE of Tcum was 1h 16min, which makes29

2% of the full range. It is also apparent from the diagrams (Fig. 8)30

that the trained ANNs can closely exhibit the trend of both Topt31

and Tcum.32

4.4. CaSe study: Calibration of the structure model 33

In this case study, we evaluate the reduction of the cumulative 34

uptime (optimization cost) without affecting the duration of the 35

optimization, using a real-world optimization problem from the 36

field of hydroinformatics. Hydroinformatics integrates the use of 37

numerical simulation and modelling, metaheuristic optimization 38

algorithms, IoT, big data, data mining, HPC, cloud computing 39

and other efficient techniques to overcome the complexity of 40

the problems associated with hydraulics, hydrology and envi- 41

ronmental engineering for better management of water-based 42

systems [38,39]. Bearing in mind the importance of evolutionary 43

algorithms for the field of hydroinformatics [40] we demonstrate 44

how the proposed software system can be utilized for solving 45

water-related optimization problem. 46

One of the most important topics in this field is the safety 47

of hydropower facilities, which amongst others, requires calibra- 48

tions of subsurface rock mass models. The purpose of a model 49

calibration (i.e., parameter estimation) is to find the optimal pa- 50

rameter set for the model such that the model behaves optimally 51

in regards to the given objectives. Our use case is the calibration 52

of a structural finite element model of a rock mass located nearby 53

the Iron Gate hydropower plant on the Danube river. The opti- 54

mization task is to find the optimal model parameters to match 55

series obtained from shear and pressure application experiments. 56

Experiments of shear and pressure application were con- 57

ducted for each of the 6 groups of rocks, modeled using the 58

Mohr–Coulomb material model [41]. In the shear test, the rock 59

mass was subjected to normal stress in order to consolidate 60

vertical displacements, followed by a gradual application of shear 61

stress until the fracture. In the second test, displacement-pressure 62

relationship was obtained by the application of a pressure to the 63

rock mass in multiple load and release cycles. 64

Boundary conditions and loads applied to the finite element 65

model corresponded to the real experiments. The Mohr–Coulomb 66

material model had a total of 14 parameters. The values of four 67

of them were taken from literature. The values of the rest of 68

the parameters were estimated so the model fits experimental 69

measurements. The objective functions were to minimize: (1) the 70

RMSE between experimentally obtained and calculated vertical 71

displacement; (2) the RMSE between experimentally obtained 72

and calculated shear stress. 73

The multi-objective optimization problem was solved using 74

NSGA-II algorithm [42]. The following set of algorithm parameters 75

was adopted: a population size of 100 individuals, a maximum of 76

100 generations, a simulated binary crossover with a probability 77

of 0.9 and a distribution index of 20, and polynomial mutation 78

with a distribution index of 20 and probability of 1/l, where l is 79

the chromosome length (in our case 1/10). The average value of 80

teval was 117 s, giving a total of Tc = teval · N · G ≈ 325h, thus 81

qualifying this optimization task as a computationally intensive 82

problem. 83
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Fig. 8. Training results for total optimization time and cumulative uptime of worker instances.

Table 3
Examples of solutions from Pareto front.
Solution Lifetime, workers Total optimization time Topt Cumulative uptime Tcum (for 100 generations)

S1 L = (900, 300),Wmax = 40 10h 52min 421h 28min
S2 L = (1000, 300),Wmax = 21 17h 21min 378h 47min
S3 L = (334, 300),Wmax = 30 13h 31min 395h 36min
D L = (150, 300),Wmax = 20 18h 5min 403h 53min

Before actually solving the described optimization problem,1

the decision support engine determines the optimal combination2

of instances’ lifetime L and the maximum number of workers3

Wmax for this particular optimization task. The ANN models of the4

infrastructure behavior were used as the evaluators in the process5

of determining the optimal (L,Wmax) combination. The decision6

support engine also uses NSGA-II multi-objective GA to solve7

this bi-criteria optimization problem. The obtained Pareto front8

(Fig. 9) shows possible tradeoffs between the total optimization9

time and the infrastructure cost. The results are shown for 10010

generations run. For different combinations of (L,Wmax), either11

total optimization time drops, but the cost is very high, or the12

cost is lower, but optimization lasts longer. We can observe that13

Tcum ranged from approximately 379 h to 421 h, which in relative14

terms means that it varied by only 11%. On the other hand, total15

optimization time Topt can differ up to 60% depending on the16

chosen combination of lifetime and maximum number of work-17

ers. This makes sense, since for a fixed number of evaluations,18

there is a fixed amount of work to be performed by the launched19

computing instances, and their cumulative uptime Tcum cannot20

vary significantly, regardless of the selected elasticity parameters.21

However, the duration of the optimization process can be largely22

influenced primarily by the maximum number of workers Wmax23

involved in the fitness evaluations.24

Table 3 shows the comparison of the solution at the very25

left end of the Pareto front (denoted as S1), and the one at the26

far right of the front (S2). It can be noticed that the difference27

between them in terms of the Topt is 6 h 30 min, while Tcum differs28

by as much as 42 h 40 min. If a user wants to reduce not only the29

cost, but also the optimization duration, he can chose a solution30

(L = (334, 300),Wmax = 30) at the approximate middle of the31

Pareto front (denoted as S3).32

If he did not use the decision support engine and went with33

random lifetime of L = (150, 300) and Wmax of 20 workers (point34

D), then the whole optimization would last more than 18 h, and35

the cumulative uptime would be 403 h 53 min. It is apparent36

that by choosing the arbitrary point D over the solutions offered37

by the prediction engine, one will either delay results’ delivery38

or increase expenses. If we compare point D with solution S1,39

the Topt is increased by nearly 62% with only a 4% decrease in40

Tcum. Comparing further point D with the solution S2, we can41

notice that the cost is significantly higher - nearly 25 h, while the42

optimization time is almost the same. By choosing D over S3, the43

increase of optimization time would be approximately 35% and44

uptime approximately 3%.45

Selecting any Pareto optimal solution suggested by the deci- 46

sion support engine, one can achieve considerable savings, ei- 47

ther in terms of optimization time or optimization cost. For the 48

optimization tasks with more time-consuming fitness evalua- 49

tions, even greater savings could be achieved, as explained in 50

Sections 4.1 and 4.2. 51

5. Conclusion 52

We have presented Cloud extensions to an existing frame- 53

work [10] for genetic algorithm based large-scale optimizations. 54

Instead of a standard HPC stack, we employed IaaS in order 55

to distribute computationally expensive fitness evaluations. The 56

benchmarks were carried out with the purpose of showing to 57

what extent a higher infrastructure overhead affects the auto- 58

scaling capabilities of the framework, including its frugal ap- 59

proach to engagement of computing resources. We benchmarked 60

the fully static pilot job approach versus WoBinGO’s elastic ap- 61

proach in terms of pure performance, total instances’ uptime and 62

cost-to-performance ratio. The obtained results are promising, 63

especially in the case of computationally heavy fitness evaluation 64

functions, when the relative cost of the IaaS overhead can be 65

neglected. Additionally, the elastic worker instance launcher gives 66

a significantly lower cost-to-performance ratio than any static 67

counterpart. 68

Our major innovation lies in optimizing the performance of 69

large scale optimization in the Cloud environment. We propose 70

a decision support engine that recommends optimal framework 71

parameters to achieve minimal total execution time and total cu- 72

mulative uptime for a specified optimization problem. The engine 73

solves a bicriteria optimization problem and uses the surrogate 74

models of the IaaS behavior under various large-scale optimiza- 75

tion loads as a fitness evaluator in MOGA. The decision support 76

engine output is given in the form of a Pareto front showing 77

possible tradeoffs between overall optimization execution time 78

and the cumulative time of engaged instances. According to a 79

given assessment, a user can decide upon faster delivery of results 80

or lower infrastructure cost. 81

The real-world simulation-based optimization clearly showed 82

that it was possible to make significant savings with the proposed 83

decision support engine. With more data in the training set, a bet- 84

ter selection of training method and selection of error measures 85

based on a validation data set, it would be possible to obtain even 86

more robust surrogate models of infrastructure. 87

It is worth noting that, speaking in terms of technology readi- 88

ness level (TRL) [43], WoBinGO prototype was demonstrated in 89
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Fig. 9. Pareto front obtained by decision support engine.

an operational environment (TRL level 7), while the decision1

support engine was validated in a laboratory environment (TRL2

level 4). In future we will continue the development of decision3

support engine and will strive to solve the following challenges:4

(1) Different IaaS provider payment policies have to be taken into5

account, (2) Introduce and respect QoS requirements by users (3)6

Provide a decision support engine that helps users to determine7

a run scenario based on a specific provider, QoS specification,8

cost limits, etc. (4) Consider integrated security approach on9

OpenStack similar to [44], and (5) Support Cloud interoperability10

and federation.11
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