
Machine Learned Domain
Decomposition Scheme Applied to
Parallel Multi-scale Simulations

Journal Title

XX(X):1–11

c©The Author(s) 2017

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/ToBeAssigned

www.sagepub.com/

Miloš Ivanović1, Ana Kaplarević-Mališić1, Boban Stojanović1, Marina Svičević1 and Srboljub
Mijailovich2

Abstract

Since multi-scale models of muscles rely on the integration of physical and biochemical properties across multiple length

and time scales, they are highly CPU consuming and memory intensive. Consequently, their practical implementation

and usage in real-world applications is limited by high computational requirements. There are various reported

solutions to the problem of parallel computation of various multi-scale models, but due to their inherent complexity,

load balancing remains a challenging task. In this paper, we present a novel load balancing method for multiscale

simulations. The method uses computatonally simple single-scale model in order to predict computational weights

of the integration points within the complex multi-scale model. Employing obtained weights, it is possible to improve

domain decomposition prior to the complex multi-scale simulation run and consequently reduce computation time. The

method is applied to the two-scale muscle model, where finite element on macro scale is coupled with Huxley’s model

of cross-bridge kinetics on the micro scale. Our massive parallel solution is based on the static domain decomposition

policy and operates in heterogeneous (CPU+GPU) environment. The approach was verified on the real-world example

of the human tongue, showing high utilization of all processors and ensuring high scalability, thanks to the proposed load

balancing scheme. The performance analysis shows that the inclusion of the prediction of the computational weights

reduces execution time by about 40% compared to the run which uses trivial load balancer which assumes identical

computational weights of all micro models. Proposed domain decomposition approach posseses a high capability to be

applied in a variety of multi-scale models, not only in the field of bioengineering.

Keywords

Multi-scale modeling, parallel computing, load-balancing, muscle simulation, Huxley’s muscle model

Introduction

Multi-scale models that are characterized by a range of
spatial-temporal scales arise widely in many scientific
domains. Despite the diversity in subject areas and
terminology, there are many common challenges in multi-
scale modelling, especially their real-world validation and
high computational requirements Karabasov et al. (2014).

In the field of bioengineering, the models can be classified
as phenomenological and biophysical. Phenomenological
models predict the response to a specified input based on
experimental measurements. Biophysically based models
attempt to predict the tisssue response as emerging from
the underlying physiology of the system and often take
multi-scale approach. The large category of the multi-scale
models uses an approach where reliable finite element
(FE) method covers macro-scale behavior, while micro-scale

molecular interaction model acts in each FE integration point
in order to provide instantaneous macroscopic constitutive
material characteristics. Ivanović et al. (2015) demonstrates
mentioned approach on the skeletal muscle two-scale model.

However, greater accuracy of the multi-scale models
comes at certain price. Their practical implementation
and usage in real-world applications is limited by their
high computational requirements. Feasible usage of these
models could be reached only by employing massive

1Faculty of Science, University of Kragujevac, Kragujevac, Serbia
2Department of Chemistry and Chemical Biology, Northeastern
University, Boston, USA

Corresponding author:
Miloš Ivanović, Faculty of Science, University of Kragujevac, R.
Domanovića Str. 12, 34000 Kragujevac, Serbia.

Email: mivanovic@kg.ac.rs

Prepared using sagej.cls [Version: 2016/06/24 v1.10]



2 Journal Title XX(X)

parallellel techniques in high performance computing (HPC)
environment, demonstrated by Chopard et al. (2011),
Ivanović et al. (2015) and Heidlauf and Röhrle (2013).

Although these tools and frameworks provide significant
acceleration, the utilization of the CPUs and GPUs is
not perfect. The main reason lies in imperfect domain
decomposition, due to the fact that most of the realistic
models have complex geometries and inhomogeneous
structure. Due to variations in structure and material
properties coupled with different external conditions and
loads, the computational weight varies significantly between
the model parts and negativelly affects the balance of load.
In the absence of any knowledge regarding these spatial and
temporal imbalance, the domain decomposition algorithms
usually consider all model parts equally computationally
complex.

However, if one could obtain domain knowledge regarding
dynamic behavior of each model part, it would be possible
to assess their computational weights and employ this
knowledge to determine the optimal domain decomposition.
Although we cannot know the exact computational weights
of the model parts prior to multi-scale simulation run, we
claim that it is possible to estimate them using a simple
machine learning technique, significantly improving domain
decomposition and consequently speed-up.

To address this opportunity, in this paper, we propose a
novel domain decomposition method which uses computa-
tionally undemanding phenomenological model (with iden-
tical setup as the complex multi-scale model) and machine
learning in order to predict the computational weights of
the integration points. Using our method consists of three
distinct steps: training step, prediction step and domain

decomposition step. In training step, we use real multi-scale
data to train our ML model to predict computational weights
of the integration points given the model state. We perform
training only once. In the second, prediction step, we first
run a fast single-scale phenomenologcal model with identical
setup as the complex multi-scale model in order to obtain the
estimate of the model state time history. Then, we employ
trained ML model to predict computational weights of the
integration points based on those states. In last, domain

decomposition step, we use obtained computational weights
in order to improve domain decomposition of the complex
multi-scale model.

We evaluate entire machine learned domain decompo-
sition approach on the parallel two-scale muscle model,
based on Huxley’s kinetics, the very same one as introduced
by Ivanović et al. (2015). In our use case, single-scale
phenomenological model run lasts more than 500 times

faster then the multi-scale run, so we can safely neglect the
overhead of the prediction step.

The rest of the article is organized as follows. Section
Two-scale muscle model gives an introduction to two-
scale model based on Huxley’s muscle kinetics, together
with simplistic phenomenological Hill’s model used as a
part of the predictor. Section Parallelising the two-scale

muscle model gives an overview of the strategy used
to parallelize computations of the micro models. Section
Predicting computational weights of the micro-models

contains details regarding developement of the innovative
domain decomposition and its usage, while Section Results

and Discussion presents the comparison between old and
new domain decomposition technique on the real-world
problem.

Two-scale muscle model

The aim of this section is to describe the components of two-
scale model of muscle kinetics, which we use to test and
evaluate our novel data decomposition technique.

Mechanical behavior of muscles is derived from the
behavior of many individual components, such as cell
membrane electrical conductivity and action potential,
calcium dynamics, chemical reaction kinetics, and the
actomyosin cycle, working together across spatial and
temporal scales. Generally speaking, existing computational
muscle models fall into two classes: (1) phenomenological,
which evaluates the performance of the whole muscle
and (2) biophysical, which investigates the ability of
contractile proteins to generate force and movement at
the cellular level. The most widely used phenomenological
model, the Hill model described in Hill (1938); Zajac
(1989); Kojic et al. (1998), only takes into account the
relationship between active stress and strain rate, so its
use is limited to isometric and steady state contractions.
Thus, while practically useful, the Hill model is often
inadequate for simulations of motor physiology. Most
biophysical models evolve from the hypothesized cross-
bridge kinetic concepts originally formulated by A.F. Huxley
in Huxley (1957). Simulations of these kinetic processes,
in the context of whole muscle models are tremendously
computationally intensive and require simplifications of
geometry, composition, and activation (Razumova et al.
(1999)). These deficiencies in phenomenological and
biophysical approaches invite the development of multi-
scale models of muscle contraction that employ models
of molecular interactions to calculate the instantaneous
macroscopic constitutive material characteristics of muscle

Prepared using sagej.cls



Ivanović, Kaplarević-Mališić, Stojanović and Svičević 3

necessary for quantitative models of whole muscle functional
behavior.

A multi-scale muscle model provides a method to
characterize deformation and force generation based on
instantaneous material properties and component geometry.
At the molecular scale, strain-dependent transitions between
molecular contractile states define the instantaneous capacity
of a muscle to generate active force and stiffness. This
instantaneous muscle stiffness directly contributes to local
constitutive relationships and thus the balance of forces.
Instantaneous material attributes of the muscular tissue,
derived from local actomyosin (molecular) interactions
within muscle fiber and the material characteristics of the
surrounding connective tissue, were prescribed in the FE
integration points (Figure 1). Using this comprehensive
methodology, the configuration at a given time was
obtained from the displacement field, which is incrementally
calculated in an iterative scheme by the equilibrium of
internal forces, originating from muscle contraction and
connective tissue elasticity, and external forces originating
from the boundary and loading conditions. Macroscopic
stresses were obtained from the active stress acting in
the direction of muscle fibers and the components of
elastic tensor representing connective tissue resistance to
deformation.

Macroscopic model

From a mechanical point of view, a muscle can be considered
as a mechanical system. The most common method for
solving complex materially and/or geometrically nonlinear
structural problems is the finite element method. In an
incremental-iterative scheme, equilibrium configuration of
a muscle can be calculated, considering the muscle as a
structure composed of active fiber elements, able to contract
under activation within the deformable connective tissue
continuum as demonstrated by Kojic et al. (1998).

The governing equilibrium equation of a FE structure in
deformed configuration at a time step (t) and iteration (i) is
formulated as:(

t+∆tKel + t+∆tKmol

)
(i−1) δU (i) =

t+∆tF
(i−1)
ext + t+∆tF

(i−1)
int + t+∆tF

(i−1)
activ

(1)

where t+∆tF
(i−1)
ext , t+∆tF

(i−1)
int and t+∆tF

(i−1)
activ are vectors

of external physiological loads, internal (structural) nodal
forces, and integrated active molecular forces lumped into
FE nodal forces, respectively; t+∆tKel and t+∆tKmol

are stiffness matrices of the passive components of

constitutive FE and of cumulative stiffness of actomyosin
bonds, respectively; δU (i) are the increments of nodal
displacements at iteration (i) and the left-upper index t+ ∆t

indicates that the equilibrium equations correspond to the
end of the time step. The key step in a standard FE
formulation is the evaluation of the element nodal internal
and active forces:

t+∆tF
(i−1)
int + t+∆tF

(i−1)
activ =

n+1∫
t+∆tV (i−1)

t+∆tB
T (i−1)
L

t+∆tσ(i−1) dV,
(2)

where t+∆tB
T (i−1)
L is the geometric linear strain-

displacement matrix (superscript T means transpose),
t+∆tσ(i−1) is the 2nd Piola-Kirchhoff stress tensor within
the muscle, and t+∆tV (i−1) is the volume of a FE. The
contribution of variable stiffness of actomyosin bonds,
t+∆tK

(i−1)
mol , and of the passive component representing

connective tissue, t+∆tK
(i−1)
el , define the material

resistance to deformation across spatial scales and can be
calculated as:

t+∆tK
(i−1)
mol + t+∆tK

(i−1)
el =

n+1∫
t+∆tV (i−1)

(t+∆tBT
L

t+∆tC t+∆tBL)(i−1) dV+

n+1∫
t+∆tV (i−1)

(t+∆tBT
NL

t+∆tS t+∆tBNL)(i−1) dV,

(3)
where C is is the constitutive matrix representing the
stressstrain relationship, t+∆tBNL is nonlinear strain-
displacement transformation matrics, t+∆tS is matrix of 2nd

Piola-Kirchhoff stresses.

After assembling the element balance equations, the FE
equilibrium equations for the entire muscle are solved,
securing the equilibrium of F ext, F int and F active within
the prescribed tolerance at the end of each time step,
as shown by Bathe (1982), Bathe and Kojic (2005).
The displacement vector U i is updated during iterations
by the current increment δU (i) until δU (i) ≈ 0 at the
convergence. Active force generation, t+∆tF

(i−1)
activ , and

stiffness, t+∆tK
(i−1)
mol , are directly dependent on the rate

of muscle deformation in the principal direction of muscle
fibers (Kojic et al. (1998)).

Evaluation of nodal internal and active forces in Equation
(2) demands determination of stresses in muscle fibers
corresponding primarily to their stretch rates. This can
be performed by employing a simplistic phenomenological
model like Hill’s, or more precise and computationally
complex physiological model such as Huxley’s.

Prepared using sagej.cls



4 Journal Title XX(X)

Figure 1. Multi-scale model of muscle contraction: (a) muscle FE discretization; (b) diagram depicting the muscle fibers contained
within a characteristic tree-dimensional FE, including denoted FE integration points and the principal direction of muscle fibers, ξ;
(c) elongation of an individual muscle fiber, ∆L, at the indicated spatial scale and under stress σξξ; ∆L is calculated from current
length, tL, and slack (relaxed) length L0; the current time is denoted as t; (d) Huxley’s cross-bridge kinetics model.

Hill’s phenomenological model

Hill’s equation (Hill (1938)) is derived from the quick-
release experiments on a muscle in tetanized condition,
which can be written in dimensionless form as

S

S0
=

1− v/v0

1 + cv/v0
(4)

where S represents tension in muscle, v is the velocity of the
contraction, v0 is maximum velocity, S0 is maximum tension
in tetanized condition and c is constant. Muscle composite
structure consisting of different fiber types can be presented
as series of contractile and non-linear serial elements,
representing an active part of a muscle, coupled in parallel to
the linear elastic element representing the connective tissue
(passive part), following Stojanovic et al. (2007). Contractile
element behavior is described by Equation (4) and curve
established by Gordon et al. (1966). The tension-stretch
relationship for the non-linear elastic element is given by:

S = (S∗ + β)eα(η−η∗) − β (5)

where S∗ represents the tension corresponding to a stretch η∗

while α and β are the material constants. From the condition
that the stresses in contractile and serial elements are equal,
we can obtain the active muscle stress σm at the material
point.

The total stress σ is expressed as the contribution of active
muscle forces and the contribution of (passive) elasticity of
collagenous connective tissue, cell membrane, and muscle
noncontractile cytoskeleton in parallel to muscle cells:

σ = σmφ+ (σE + b · ė), (6)

where φ is the fraction of muscle fibers in the total
muscle volume and σE is the stress in passive part of the
muscle, b · ė is a damper element that provides resistance in
mechanical motion and b is a damping factor. The member
of the tangent constitutive matrix in the fiber direction can
be calculated as

C̄11 = φ
∂σm
∂ē11

+ (C̄E11 + b · ė11

∂ē11
), (7)

where C̄E11 is the element of elastic tangent constitutive
matrix of connective tissue in the fiber direction.

Huxley’s microscopic model

Another way to obtain stress in Eq. (2) follows Huxley
(1957), where a muscle fiber constitutive unit is represented
by interacting actin and myosin filaments. Elastic spring
like connections between these filaments, formed via so-
called cross-bridges, generate in aggregate the active muscle
force and stiffness proposed by Torelli (1997). Depending
on boundary conditions, over time the filaments can slide
relative to each other so cross-bridges can experience both
tension and compression. Following these rules, McMahon
(1984) proposed Huxley’s sliding filament theory defined by
the following partial differential equation defined over the
domain Ω:

∂n

∂t
(x, t)− v ∂n

∂x
(x, t) = N (n(x, t), x), (8)

where n is fraction of attached cross-bridges displaced for
x from its strain free position at time t, v = dx/dt is
the shortening velocity of the thin filament with respect
to the thick filament, N (n(x, t), x) = [1− n(x, t)] f(x)−

Prepared using sagej.cls



Ivanović, Kaplarević-Mališić, Stojanović and Svičević 5

n(x, t)g(x) is compounded transition flux between attached
and detached states where f(x) and g(x) are attachment
and detachment rates, strictly dependent on the distance
x. For solving the first order hyperbolic Equation (8),
we used method of characteristics following Lister (1960);
Mijailovich et al. (1996).

The specific muscle tension arises from the distortion of
the cross-bridge represented as a linear spring and can be
calculated as F(t) = κ ·

∫∞
−∞ x · n(x, t)dx, where κ is the

cross-bridge stiffness. Instantaneous specific muscle stiffness
is then defined by integral K(t) = κ ·

∫∞
−∞ n(x, t)dx. The

active stress generated in muscle is calculated as

σm = F σiso
Fiso

, (9)

where σiso is a maximal isometric stress and Fiso is a
specific maximal force calculated by Huxley’s model for
isometric contraction (v = 0).

Determining the total stress σ and constitutive equation
can be performed in the same manner as it has been done
in case of Hill’s model, using Equation (6) and (7). The
computational difference between Hill’s and Huxley’s model
is significant and counts to two to three orders of magnitude.
While the phenomenological model represents constitutive
law by a single equation, Huxley’s model requires the entire
molecular simulation to be conducted and PDE Equation (8)
solved using iterative method of characteristics.

Parallelizing the two-scale muscle model

The starting point in the applied parallelization strategy
is dividing each iteration, during incremental two-scale
model simulation, into two distinct sets of algorithm steps,
following Ivanović et al. (2015). The first set considers the
finite element calculations such as assembling the element
balance equations and solving the FE equilibrium equations
for the entire muscle model. The second set considers micro-
scale models of muscle fibers for each integration point
within the FE mesh. As stated by Ivanović et al. (2015), our
solution applies parallelization only to the second set, i.e.
to micro-scale model calculations, while the FE algorithm
runs in sequential manner. Parallel run assumes a set of MPI
processes, with a basic idea being to statically decompose
the entire set of micro models into smaller chunks. One
of the processes, having the role of a manager, performs
FE calculations. When the algorithm reaches the point
where micro model computations should start, each process
performs simulations over the micro models from its own
domain of responsibility. Using this approach, we reduce

the process intercommunication to only two operations:
scattering of the deformations and gathering of the stresses

together with stress derivatives, Figure 2.

The static domain decomposer acts only at the beginning
of the simulation by adjusting workload distribution to the
number of available resources. The previous implementation
demonstrated by Ivanović et al. (2015) assumes identical
computational weights of all micro-models, which is
not true, since muscle structure and the activation is
inhomogeneous. In a real tissue, each micro-model assigned
to an integration point has its own material characteristics.
Some of these points respond purely elastically, while the
others also contain muscle tissue of certain characteristics. In
addition, different parts of the muscle model undergo varying
degrees of fiber activation.

Consequently, the uniform domain decomposition based
only on determination of the size of micro model chunks can-
not result in the balanced workload. Assessing computational
weight of each micro model would largely help improving
data decomposition and reaching significantly better load
balance. In the next section, we present the method for
predicting the computational weight of the integration points
using domain knowledge obtained from the simpler Hill’s
single-scale phenonmenological model.

Predicting computational weights of the
micro-models

We base our predictor on the premise that it’s possible
to obtain approximate number of iterations of each micro-
model (computational weight) from the time history of
model states given in strain rate, stress and degree of muscle
fiber activation. Equipped with such relation, it is feasible
to employ simpler Hill’s phenomenological model with
identical setup as the complex two-scale model, in order
to provide estimations of time histories for each integration
point state. The final output of the proposed scheme is the
assesment of the total number of Huxley’s micro model
iterations for each integration point. The simplified predictor
scheme is given in Figure 3.

In the absence of any analytical relation, we employ a
machine learning technique in order to obtain approximate
number of Huxley’s micro model iterations out of micro-
model states. As shown in Figure 3, the predictor training
occurs only once, using input data obtained from real
two-scale simulation. On the contrary, it is necessary to
perform a single-scale simulation run prior to each two-scale
simulation run, in order to obtain integration points state

Prepared using sagej.cls



6 Journal Title XX(X)

Figure 2. The proposed system embodies the interface between a macro-scale layer, including the FE model and its
implementation, a micro-scale layer, including the material model that determines muscle behavior at the integration points, and an
intermediate layer, which acts to mediate the macro- and micro-scale functions.

Figure 3. Predictor of the micro-model weights. We train the predictor using records that contain the strain rate ε̇, stress σ,
activation A and the number of the micro-model iterations Ir (class variable). Hill’s single scale model produces the estimate of
time history states for each micro-model k and each time step t. Using this data, the predictor produces the computational weighs
wk for each micro-model k.

history. Finally, the predictor outputs the estimation of each
micro model computational weight, which is then employed
during the domain decomposition phase.

The additional step is not significantly burdensome for the
entire simulation process, since the duration of single-scale
simulation run using Hill’s model is over 500 times shorter
compared to the complex two-scale model with identical
setup.

Predictor training

The dynamic parameters that change throughout the muscle
simulation and dictate the behavior of the micro models
states are strain rate, stress in previous time step, and
degree of activation degree of the muscle fibers. The initial
multivariate analysis shows that these parameters have
significant impact on the micro model weight, quantified
as the number of iterations of the micro model (Huxley’s)
within a single iteration of the macro (finite element) model.

Among various ML techniques, we chose simple K-
nearest neighbor method (KNN). In our case, KNN turned
out to be more efficient and flexible than ANN (Artificial
Neural Networks). Complete set of training data was
obtained from the real two-scale model and consisted of
1165056 records in the form

(ε̇, σ, A, Ir),

where ε̇ denotes the strain rate, σ denotes stress,A activation,
and Ir number of the micro-model iterations to converge.
We divided data into training test (75% samples) and test set
(25% samples) and tested for optimal number of neighbors
to be taken. We express the error as

Err[%] =

∑n
i=1

∣∣Iir − Iiknn∣∣∑n
i=1 I

i
r

· 100, (10)

Prepared using sagej.cls



Ivanović, Kaplarević-Mališić, Stojanović and Svičević 7

where n represents the test set length, Iir the number of
iterations from i-th sample, and Iiknn predicted number of
iterations.

As shown in Table 1, the estimation on the test set works
well for any number of neighbors, with all errors below 1%.
We set the number of neighbors to 3 for further benchmarks.

Table 1. Estimation error with various number of neighbors in
KNN

Number of neighbors (k) Error (%)

2 0.530
3 0.528
4 0.580
5 0.608
10 0.795
15 0.930

Another confirmation of the validity of our KNN model
comes from the Table 2. The algorithm estimates the
majority of test set correctly. Even when wrong, it’s for a
relatively small number of iterations compared to the average
of 28 iterations.

Table 2. Error in number of micro-model iterations. Average
number of iterations is 28.

.
Error (iterations) Frequency (%)

<2 97.50
2 0.97
3 0.48
4 0.30
5 0.20
>5 0.03

Predicting and decomposing

As shown in Figure 3, the predictor is executed prior to
each two-scale simulation run. The major assumption in
this phase is that Hill’s single-scale model outputs similar
mechanical states (ε̇, σ, A) compared to the complex two-
scale model with the identical setup. The time history of
the integration points states predicted by the single-scale
Hill’s model approximate corresponding states in two-scale
model sufficiently well, as shown in Figure 4. In 99.3% of
the cases, the strain rate given by Hill’s model deviates less
than 10% from the strain rate given by the complex two-scale
model. Similar applies to the value of stress. Of course, the
activation is identical in both models, since it acts as an input
variable. The final output of the predictor is predicted number
of the iterations wk of each micro-model k:

wk =

nt∑
i=1

Ikknn(i), k = 1, n, (11)

where nt designates the number of macro-model simulation
steps.

In the following two subsections we present two decompo-
sition cases (1) simple case with homogenious computing
environment (only CPUs), and (2) more complicated het-
erogeneous computing environment (CPUs+GPUs).

Homogeneous computing environment. In a pure CPU
computing environment, we determine the average number
of iterations that should be carried out by each CPU, based
on the predicted total number of iterations and the number of
the CPUs as:

Iproc =
1

p

n∑
k=1

wk, (12)

where n is the number of all micro-models and p is the CPU
count. The domain decomposition is performed by dividing
micro models into chunks, starting from the most weighted
down to the least weigted micro model, keeping the size of
chunks under the limit of the total number of iterations per
chunk, Iproc. Finally, the algorithm allocates the remaining,
yet unallocated micro models, using simple round robin rule.
Surely, described algorithm does not provide fully optimal
task allocation in all possible cases, but is sufficient for the
verification of the efficiency of the proposed predictive load-
balancer.

Heterogeneous computing environment. Decomposing in
the heterogeneous environment (CPUs+GPUs) is a bit
more complex. The scheme which we present here is a
slightly modified technique given by Ivanović et al. (2015).
Instead of treating all micro-models equiponderant, we take
into account the predictor output designated as wk, ∀k =

1, n. Besides predictor output, the algorithm requires the
following input data for each MPI process: vj - ideal process
speed (in number of micro-model iterations per second) and
mj - the memory limit of j-th process representing the
number of micro-models that can be stored within the device
memory. The algorithm is given in Figure 5.

The first step in the iterative scheme is to obtain the
idealistic execution time T (0) (when ∀mj →∞):

T (0) =

∑n
k=1 wk∑p
j=1 vj

. (13)

Then, for each process, we determine the chunk size (number
of micro models), that the process with speed V (0)

j ≡ vj is
capable to complete in time T (0). The expected number of
the micro-model iterations a process j should perform is then

L
(0)
j = T (0) · V (0)

j , j = 1, p. (14)

Prepared using sagej.cls



8 Journal Title XX(X)

Figure 4. Histogram of relative difference between two-scale model and Hill’s model in terms of strain rate ε̇ and stress σ

Figure 5. Decomposition algorithm used in heterogeneous computing environment (CPUs+GPUs)

Now we create a trial distribution of the micro-models
C

(0)
j , ∀j = 1, p, trying to reach projected L(0)

j iteratoins.

If any process j (usually those tied to GPUs) is incapable
to store

∣∣∣C(0)
j

∣∣∣ micro-models without reaching its own
memory limit mj , then the process j is incapable to perform
calculations with its nominal speed V (0)

j . Consequently, the
real workload of the process j should be reduced to I(0)

j ≤
L

(0)
j micro-model iterations. The corrected process speed

distribution is then:

V
(1)
j =

I
(0)
j

T (0)
, j = 1, p. (15)

According to the values V (1)
j , j = 1, p, we estimate the new

synchronization time T (1). The algorithm repeats iteratively
until all projected L

(i)
j are satisfied without violating

prescribed memory limits, namely L(i)
j = I

(i)
j ,∀j = 1, p.

Results and Discussion

We conducted the performance analysis of the real-world
model of the complex muscle structure of a tongue. The
multi-scale tongue model setup is identical to that employed
previously by Ivanović et al. (2015). The model consists
of 873 finite elements, with 3492 integration points. We
modeled lingual shape changes occurring following lingual

Prepared using sagej.cls



Ivanović, Kaplarević-Mališić, Stojanović and Svičević 9

tip contact with the hard palate during swallowing, with the
total duration of 0.5 seconds divided into 50 FE (macro
model) time steps. As a hardware platform, we employed a
cluster consisted of 22 nodes, each of them equipped with
dual Intel Xeon E5-2670@2.6GHz 8-core CPU and 64GB
memory.

Figure 6 shows the normalized value of the total number
of iterations on the integration points during 0.5s, estimated
by our predictor compared to the values obtained from the
real two-scale simulation.

Figure 7 shows the comparison of the total number of
Huxley iterations carried out by each of 128 processes using
proposed predictor compared to the equiponderant case. It
is obvious that using data produced by the predictor in
determining the distribution of tasks among CPUs leads to
a significantly more balanced workload.

Consequently, incorporating our predictor within domain
decomposition policy results in reduced execution time by
about 40% compared to the same model carried out using old
equiponderant domain decomposition policy. For the sake of
comparison, the sequential execution of the simulation took
approximately 65.5 h, while 256 processes completed the
same task in only 20 minutes.

Figure 8 shows the results of the speed-up benchmark
which oposes domain decomposer employing proposed
predictor and the old using equiponderant scheme. Each
speed-up value is obtained as an average of total execution
times taken from ten simulation runs.

Conclusion

We presented a novel machine learned domain decompo-
sition scheme for multi-scale simulations in the parallel
computing environment. The scheme uses computatonally
simple single-scale model in order to predict computational
weights of the integration points within the complex multi-
scale model, thus trying to improve load balance of the
parallel run.

Our benchmark case employs data obtained from
simple Hill’s phenomenological model in order to predict
computational weights of the integration points within the
multi-scale model. Massive parallel solution, based on
decomposition of micro model domain and static domain
decomposition policy was verified on the realistic example of
lingual shape changes occurring following lingual tip contact
with the hard palate during swallowing. The novel domain
decomposition scheme ensures high utilization of all CPUs

and reduction of runtime by more than 40% compared to the
same model carried out using decomposer assuming equal
weights of all micro-models bound to the integration points.

Achieved performance boost paves the path for introduc-
ing such models into clinical practice with a reasonable
price-performance ratio, but also opens the door for new
scientific discoveries in the field of biomedicine.

Acknowledgements

Part of this research is supported by The Ministry of Science in

Serbia, Grants III41007, OI174028, III44010, and TR14005.

References

Bathe K and Kojic M (2005) Inelastic analysis of solids and

structures. Springer.

Bathe KJ (1982) Finite element procedures in engineering analysis.

Prentice-Hall.

Chopard B, Falcone JL, Hoekstra AG, Borgdorff J et al. (2011)

A framework for multiscale and multiscience modeling and

numerical simulations. In: UC. Springer, pp. 2–8.

Gordon A, Huxley AF and Julian F (1966) The variation in

isometric tension with sarcomere length in vertebrate muscle

fibres. The Journal of physiology 184(1): 170.

Heidlauf T and Röhrle O (2013) Modeling the chemoelectrome-

chanical behavior of skeletal muscle using the parallel open-

source software library opencmiss. Computational and mathe-

matical methods in medicine 2013.

Hill A (1938) The heat of shortening and the dynamic constants

of muscle. Proceedings of the Royal Society of London B:

Biological Sciences 126(843): 136–195.

Huxley AF (1957) Muscle structure and theories of contraction.

Prog. Biophys. Biophys. Chem 7: 255–318.

Ivanović M, Stojanović B, Kaplarević-Mališić A, Gilbert R and

Mijailovich S (2015) Distributed multi-scale muscle simulation

in a hybrid mpi–cuda computational environment. simulation :

0037549715620299.

Karabasov S, Nerukh D, Hoekstra A, Chopard B and Coveney PV

(2014) Multiscale modelling: approaches and challenges.

Kojic M, Mijailovic S and Zdravkovic N (1998) Modelling of

muscle behaviour by the finite element method using hill’s

three-element model. International journal for numerical

methods in engineering 43(5): 941–953.

Lister M (1960) The numerical solution of hyperbolic partial

differential equations by the method of characteristics.

Mathematical methods for digital computers 1: 165–179.

McMahon TA (1984) Muscles, reflexes, and locomotion. Princeton

University Press.

Prepared using sagej.cls



10 Journal Title XX(X)

Figure 6. Predicted vs. real computational weights of the micro models bound to the integration points

Figure 7. Total number of micro-model iterations executed by each MPI process throughout the simulation run

Figure 8. Speed-up obtained using (1) domain decomposer assuming all micro models equiponderant and (2) decomposer
employing proposed predictor. Each speed-up value is obtained as an average of total execution time taken from 10 subsequent
runs.

Mijailovich SM, Fredberg JJ and Butler JP (1996) On the theory of

muscle contraction: filament extensibility and the development

of isometric force and stiffness. Biophysical Journal 71(3):

1475–1484.

Razumova MV, Bukatina AE and Campbell KB (1999) Stiffness-

distortion sarcomere model for muscle simulation. Journal of

Applied Physiology 87(5): 1861–1876.

Prepared using sagej.cls



Ivanović, Kaplarević-Mališić, Stojanović and Svičević 11

Stojanovic B, Kojic M, Rosic M, Tsui C and Tang C (2007) An

extension of hill’s three-component model to include different

fibre types in finite element modelling of muscle. International

journal for numerical methods in engineering 71(7): 801–817.

Torelli A (1997) Study of a mathematical model for muscle

contraction with deformable elements. Rend. Semin.

Mat.(Torino) 55: 241–271.

Zajac FE (1989) Muscle and tendon properties models scaling and

application to biomechanics and motor. Critical reviews in

biomedical engineering 17(4): 359–411.

Prepared using sagej.cls


	Introduction
	Two-scale muscle model
	Macroscopic model
	Hill's phenomenological model
	Huxley's microscopic model

	Parallelizing the two-scale muscle model
	Predicting computational weights of the micro-models
	Predictor training
	Predicting and decomposing
	Homogeneous computing environment.
	Heterogeneous computing environment.


	Results and Discussion
	Conclusion

