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The obtained results show that despite WoBinGO’s adaptive and frugal allo-
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with problems that have computationally expensive evaluations. Moreover, the
benchmarks were performed in order to estimate the influence of the limited
job lifetime feature on the queuing time of other batching jobs, compared to a
static pilot-job infrastructure.
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1. Introduction

Grid computing [1] has emerged as an effective environment for the execu-
tion of parallel applications that require great computing power. Grid comput-
ing consists of a geographically distributed infrastructure gathering computer
resources around the world in a transparent way. Users are provided access to
enormous computing resources, and enabled to better meet the challenges of
science and engineering. One of the most frequently encountered challenges in
applied science and engineering, is optimization. Genetic algorithms (GAs) [2]
have proven themselves as robust and powerful mechanisms when it comes to
solving complex real-world optimization problems. GA is characterized by a
large number of function evaluations. Due to the time-consuming fitness eval-
uation functions found in real-world problems, it may take days and months
for the GA to find an acceptable solution. Speeding up the optimization pro-
cess is achieved by parallelization of GA [3],[4],[5] which reduces the resolution
times to reasonable levels. Grid computing environments provide the infras-
tructure for implementing parallel metaheuristics. There, researches face new
difficulties associated with developing and deploying a Grid based application.
The fact that Grid resources are distributed, heterogeneous and non-dedicated,
makes writing parallel Grid-aware applications very challenging [6]. The de-
velopment and execution of Grid applications requires considerable effort and
expert knowledge. Understanding the basics of Grid computing and Grid mid-
dlewares is a time and energy consuming process for developers. Moreover,
for each run of application on the Grid, one has to address the issues of Grid
resource discovery and selection, Grid job preparation, submission, monitoring
and termination which differ from one middleware to another. These differences
among middlewares may limit or hinder portability between different Grid in-
frastructures. Aside from the complexity of the Grid infrastructures, certain
limitations are also present, notably the need for users to wait, sometimes for a
significant time until their requests for computing resources are processed and
the lack of good support for interactive applications. The complexity involved
in writing Grid-enabled applications averts researches from harnessing compu-
tational Grids by scientific applications. As Grids grow in size at an admirable
rate and an increasing number of resources are put at Grid users’ disposal, it
is of utmost importance for the researchers to efficiently exploit computational
Grids in order to solve real-world problems. In this context, tools for simplify-
ing Grid application development, by hiding the complexity of Grid computing
from the researchers, can significantly enhance Grids harnessing by scientific
and engineering applications.

In this paper, we present the WoBinGO framework for solving optimization
problems over heterogeneous resources, including HPC clusters and Globus-
based Grids. Although it’s possible to utilize diverse computing resources for
solving optimization problems in parallel (multiple university clusters, Grid),
having in mind the immense computing power offered by the Grid, we will
restrict our discussion in this paper only to EGI (European Grid Initiative)
deployment of WoBinGO. The framework was designed to meet the following
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goals: (1) speeding up the optimization process by parallelization of GA over
the Grid (2) relieving the researcher burden of obtaining Grid resources and
dealing with various Grid middlewares; (3) enabling fast allocation of Grid jobs
to avoid waiting until requests for computing resources are processed by Grid
middleware; (4) providing flexible allocation of worker jobs in accordance with
the dynamics of the users’ requests, thus avoiding the unnecessary reservation
of computing resources.

The framework is dedicated for parallel execution of single and multi-objective
optimization using GA on the Grid. It uses a master-slave parallelization model
and allows both: parallel evaluation of a population in GA and parallel exe-
cution of multiple instances of the parallel GA. As a novelty, this framework
incorporates the Work Binder (WB) [7] which provides almost instant access
to Grid resources and interactivity for client applications. Integration of WB
into the framework enables the programmer to focus solely on the optimization
problem without having to worry about specific details of Grid computing. Ad-
ditionally, WB increases the utilization of the Grid infrastructure by offering
automated elasticity in its occupancy, based on present and recent client be-
haviour. Furthermore, a single WB service is capable of serving multiple users
with multiple GA instances, where for each instance of GA a population eval-
uation is also parallelized. Due to the multi-tier design, it is easily possible to
replace master-slave parallelization model with hierarchical parallel GA with
master-slave demes [8] or with PEGA (parallel cellular GA) [9], keeping all the
other components intact. The framework also adheres to the standard Globus
security mechanisms, including GSI and MyProxy.

With the master-slave parallelization model and WB, evaluation of individu-
als is separated from the rest of the algorithm and performed on Grid computing
elements (CEs). This allows an objective function to be written in any compiled
or script language, which makes our framework favourable for solving optimiza-
tion problems in diverse areas of science and engineering. The framework has
been developed as an effort to efficiently solve optimization problems from the
field of hydrology, but can be used for any other optimization task suitable for
GA treatment.

Benchmarks were carried out using EMI/UMD middleware [10] on the South-
East European regional infrastructure in order to evaluate the usability and effi-
ciency of the proposed framework. The obtained results show that the achieved
speed-up is almost linear. Moreover, the benchmarks were performed in order
to estimate the influence of the limited job lifetime feature on the queuing time
of other batching jobs. Compared to a static pilot-job infrastructure, this wait-
ing time was significantly reduced. Further details about pan-European Grid,
aspects such as production infrastructure, the management tools and the oper-
ational services offered can be found in [11]. The process of building regional
Grid infrastructure is thoroughly described in [12].

The rest of the paper is organized as follows: in Section 2, we review the
related work. A description of the framework is given in Section 3. In Section 4,
theoretical analysis of WoBinGO’s speed-up along with the experimental results
and discussion are given. A case study is presented in Section 5, followed by
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concluding remarks in the last section.

2. Related Work

Grid oriented genetic algorithms (GOGAs, following the notation first intro-
duced by [13]) have been used over the past years for solving different problems
[14], [15], [16]. The research community has also proposed and implemented
optimization frameworks with parallel metaheuristics included. Most of them
have been using small, dedicated and homogeneous computing resources. Here,
we will only discuss those that enable execution of parallel metaheuristics in
Grid computing environments.

GridUFO is a service oriented optimization framework [17] that offers shar-
ing of optimization algorithms and problems among GridUFO users and solv-
ing of optimization problems using an algorithm already registered with the
framework. New algorithms and objective functions can be registered with the
framework, but only C language code is acceptable. This is a huge limitation
since the hydrocodes of our main interest are written in C#/.NET and Fortran.
The authors report significant speed-up for the problems of a larger size, but
they do not consider the time spent for scheduling the Grid job.

ParadisEO-CMW [18] is the framework for designing and deploying parallel
metaheuristics on computational Grids, assembling together the ParadisEO [19]
and MW [20] frameworks. Grid-enabling an application with MW involves the
reimplementation of a number of virtual functions. The framework is only
intended for Grids consisting of multiple Condor pools combined via flocking.

JG2A [21] was created as an extension of JGA [22] to take advantage of Grid
technologies, allowing population evaluation parallelization and parallelization
of the GA parameter tuning experiments. JG2A uses GT4 Grid middleware, but
requires Condor as an underlying scheduler. This makes it inflexible because,
in general, local resource managers other than Condor are used at different
computing sites and these sites may be under a different administrative control,
which makes it hard to enforce the deployment of Condor on all these sites.

Efficient hierarchical parallel GA framework using Grid computing (GE-
HPGA) [23] hides the complexity of a Grid environment through the extended
GridRPC API and a metascheduler for automatic resource discovery. It has
a two level structure: at the first level, sub-populations are transferred onto
remote computing clusters and subpopulation evolution is invocated using the
Globus job submission protocol; at the second level, evaluation of the individuals
is performed on cluster worker nodes (WNs) and may be realized using any local
cluster scheduler. Empirical results using a benchmark problem and a realistic
airfoil design problem show that speed-up can be attained as long as the bounds
on fitness function cost, cluster size, and communication overheads are satisfied.

Some recent works utilize Hadoop computing infrastructure for the paral-
lelization of GA [24],[25],[26],[27]. This is a novel and interesting approach but it
requires dedicated physical or cloud based Hadoop cluster, which is not always
available. In the mixed environments consisted of multiple university clusters
and regional Grid infrastructure, our approach is a bit more flexible.
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Researches have devoted great effort to facilitating the use of Grid infras-
tructure for scientific and engineering applications. The common approach is
to overlay the existing middleware layer with a custom software which enables
easier and more efficient use of Grid computational resources. Pilot-job systems
have emerged as an effective solution for overlaying middleware. With pilot-
based infrastructures, users’ jobs are submitted to a centralized pool and pulled
by pilots running on computing nodes. This late binding of user jobs and re-
sources greatly improves the user experience, as it hides broken Grid resources
and provides more accurate information about available resources. Condor has
its pilot-job submission framework called GlideIn [28]. Falkon [29] is another
pilot-job system. It provides a light high-throughput execution environment
on top of the Globus GRAM service, and achieves remarkable scalability and
work-dispatch efficiency. Other examples of pilot-job systems are Coasters [30],
DIANE [31], and BigJob [32].

Much work has been done on parallelizing GAs and developing parallel meta-
heuristics frameworks which employ Grid computing resources. On the other
hand, pilot-job systems have been developed to improve the utilization of pro-
duction Grids, greatly reducing middleware overheads, by decoupling workload
submission from resource assignment. However, to our knowledge, there is no
framework for parallel metaheuristics that employs a pilot-job system dynam-
ically using elastic resource provisioning. We argue that elastic resource pro-
visioning can be as efficient as static pilot-job infrastructures used in previous
frameworks, but with the key advantage of avoiding unnecessary occupation of
Grid resources.

We therefore propose the parallel framework for optimization based on GA
which employs the WB service. The main purpose of the WB is to quickly allo-
cate new jobs for Grid users, and hide the complexity of the Grid infrastructure
from the user. It is based on the use of pilot-jobs, but has certain advantages.
Both, pilot-job infrastructures and WB start placeholder jobs asynchronously
and match them with the actual work, but there are differences between these
two approaches. In the pilot infrastructures, matching is done with the data
describing some work to be done, while WB establishes association with a live
client interacting with the job. With the WB approach, a job without a match-
ing client can wait for some time in the pool of ready jobs, and pilot-jobs exit
immediately if there is no work to be done. The communication between the
client and worker can be observed, influenced, or filtered when using the WB,
and the pilot-infrastructure only influences the job upon selection of a work item
from the repository.

The key feature that WB provides, as a part of the WoBinGO framework, is
its inherent frugality in resource consumption, provided by two distinct aspects:
(1) the system adapts the number of placeholder jobs to the current workload,
and (2) a defined maximum job lifetime prevents endless waiting of other users’
jobs in the batching queues.
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3. WoBinGO features

This section presents the key features of the WoBinGO framework, giving
its advantages over other related solutions:

• Optimization using parallel GA can be performed over diverse computing
resources, including Grid and HPC clusters.

• The complexity of the underlying Grid infrastructure is hidden from the
user.

• Automatic adaptive allocation of jobs with limited lifetime which provides
friendliness towards other batching queue users.

• A single WB service is capable of serving multiple users with multiple GA
instances, sharing the same pool of ready jobs.

• Quick client-worker binding is enabled by elastic maintenance of the pool
of ready jobs.

• Development of objective functions and optimization algorithms are inde-
pendent, and can be performed by different developers.

• Objective function can be written in any compiled or script language sup-
ported by an underlying OS/runtime environment.

• Standard security features of GSI (Grid Security Infrastructure) and re-
source discovery using MDS (Monitoring and Discovery System) are em-
ployed.

The proposed framework is designed for parallel execution of single and
multi-objective optimization using GA. WoBinGO employs a master-slave par-
allelization model, where evaluation of individuals is distributed to several slave
nodes, while the master node executes the rest of the algorithm in sequential
fashion. The drawback of the master-slave model is that the communication
overhead can be higher than the benefits of parallel execution. However, for
expensive optimization problems the master-slave model is a sufficiently good
choice. Black-box fitness functions, as those found in engineering optimization
problems (finite element, finite difference, meshfree methods), comprise a sim-
ulation run that takes several minutes to finish. Our framework is intended
for solving these kinds of problems and, as can be seen in Section 4, it has
accomplished remarkable results.

The framework’s design is object oriented and includes separation among the
algorithms, problem specifications and objective functions, so that different de-
velopers can independently write algorithms and objective functions. Currently,
the framework incorporates simple GA for single-objective optimization and the
multi-objective optimization algorithm NSGA-II [33]. The object-oriented ap-
proach of WoBinGO enables new algorithms to be integrated easily by extend-
ing the provided abstract classes. Objective function evaluation is separated
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from the rest of the optimization algorithm and performed on the Grid clus-
ters. This allows objective functions to be written in any language supported
by the underlying OS or runtime environment. The authors have used objec-
tive functions written in C#, C++, Java, Fortran, Python and Matlab when
solving various problems using the framework. Furthermore, all issues related
to the Grid computing environment are concealed from an algorithm and the
objective functions’ developers. There is no need for ”gridifying” a code that
performs objective function evaluation, so the development time is reduced con-
siderably. The only restrictions regarding the objective function interface are
the following: (1) at the beginning, it has to read from the standard input the
number showing how many parameters it will receive, and then all the param-
eters one by one (the term parameter in the context of GAs denotes one gene
of the chromosome.); (2) at the end of the evaluation, it has to write to the
standard output the number showing how many results it will return, and then
all the results one by one (a result is an obtained objective function value of a
chromosome).

A GA often requires a parameter tuning experiments in order to select the
optimal values of genetic operators’ parameters. Parameter values greatly de-
termine the algorithm efficiency and whether it will find a near-optimal solution.
Choosing the right parameters is a time-consuming process. WoBinGO speeds-
up the parameter tuning process by allowing multiple independent optimization
instances with different algorithm parameters. Furthermore, a single WB ser-
vice is capable of serving multiple users with multiple GA instances, sharing the
same pool of ready jobs [7].

The researchers who are using GOGAs are usually faced with manual dis-
covery and selection of available Grid resources. Due to the large amount and
dynamics of the Grid resources, this process is time-consuming and impractical.
After the resources are found and selected, Grid job preparation, submission and
monitoring is required. At this point, the users often have to wait a noticeable
amount of time for the job submissions to be processed. By relying on the WB
service, WoBinGO hides all issues related to the Grid computing environment
from the users, allowing them to focus solely on the problem at hand. This is
achieved by adopting the WB service.

WB is capable of utilizing Grid elastically in accordance with resource avail-
ability and the present workload. As a pilot-job based system, the WB manages
the job pool with the goal of always having enough worker jobs in the pool for
incoming clients, as well as minimizing stress on the Grid infrastructure. The
job pool size may vary significantly, depending on the current load and dynam-
ics of new user and job arrivals. If there are no active clients, WB is in the idle
operational mode, and job pool size is maintained at a predefined minimum,
leaving the Grid resources available for other users. When the number of active
clients is above zero, the active mode of operation is used. In active mode two
job refill strategies can be used: regular and full throttle. Regular refill strategy
distributes the load fairly among CEs, keeping the number of ready jobs on each
CE at the appropriate level by analysing its current status. The number of jobs
that will be submitted to a CE depends on the following: (a) target pool size,
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(b) current amount of ready jobs on a CE, (c) number of already submitted jobs
that are expected to become ready, (d) number of busy jobs that will soon finish
and become reusable. When the number of jobs that needs to be submitted is
calculated, the WB service submits jobs gradually over time to compensate for
the non-instant responsiveness of the CEs and to avoid batching system expo-
sure to a sudden high load. The full throttle refill strategy is used when the
number of ready jobs falls below a predefined threshold due to high clients’ ar-
rival frequency or saturation of some of the CEs. The WB service submits jobs
instantly as soon as it detects that the total demand for jobs is greater than the
sum of ready jobs and those that are expected to become ready in a short time.
The WB service submits jobs instantly as soon as it detects that the desired
total amount of jobs is greater than the actual amount of ready jobs (and the
jobs that are expected to become ready in a relatively short time). In order to
provide new ready jobs quickly, it picks the group of CEs with lowest response
times and proportionally submits jobs to them. If the fastest CEs have reached
their maximum pool sizes and there is a further need for refill, the amount of
remaining refill jobs will be submitted to the rest of the CEs. The described
adaptable job submission and pool management policy provide high availability
of ready jobs and near-optimal usage of Grid resources.

Perhaps the most innovative feature not found in other similar frameworks is
WoBinGO’s friendliness towards other batching queue users, due to the worker
jobs’ limited lifetime. When that time is about to expire, despite there being
more evaluation work to be done, the system removes the current job and sub-
mits an appropriate number of new jobs. This way, the other regular/Grid users
have better chances because they are not affected by job placeholders keeping
resources allocated without any actual work given.

The WoBinGO framework also takes security issues seriously into account.
It employs standard Globus security features provided by GSI and MyProxy
service. Each act of communication through WB has to be certified by a proper
p12 certificate issued by an appropriate CA (Certification Authority).

To the best of our knowledge, no other previously developed distributed GA
framework provides these characteristics in one place: efficient elastic resource
provisioning, friendliness towards other batching queue users, multi-platform
support, object-oriented design, clear separation between algorithms and objec-
tive functions, and inherent security.

3.1. Architecture

In this section, we present the architecture of the proposed framework.
The basic structure of the framework is illustrated in Fig. 1. The frame-

work consists of the optimization master and the distributed evaluation system
based on WB. The distributed evaluation system is composed of the evaluation
pool and the WB subsystem. The master executes the main evolutionary loop
and the distributed evaluation system takes care of the Grid execution of the
evaluation processes. It should be noted that the evaluation pool is NOT the
same entity as the pool of ready jobs created and maintained by WB itself.
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Fig. 1: WoBinGO architecture

The master performs the main evolutionary loop to the point when a gen-
eration has to be evaluated. At that moment, the master sends all individuals
in a generation to the evaluation pool. After all individuals from a generation
have been evaluated, and assigned with an objective function value, the master
proceeds with the rest of the evolutionary algorithm until the stopping criteria
is reached.

The evaluation pool acts as an intermediate layer between the master and
the WB service. It provides asynchronous parallel evaluation of individuals from
a generation. Each time a generation has to be evaluated, the evaluation pool
receives individuals from the master and enqueues them. The evaluation pool
invokes the WB client for each of the queued individuals. When an individual
is evaluated, the evaluation pool receives the result back from a WB client and
then assigns objective function value to the corresponding individual.

The WB environment consists of software components distributed in three
tiers: the client, the worker, and WB service. The purpose of the WB service
is to maintain the pool of ready worker jobs on the Grid and to bind them with
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clients that request evaluation. It submits jobs to the Grid CEs in order to load
enough worker jobs in the pool for incoming requests. The client establishes
a connection to the WB service, and requests a worker. As soon as the client
and worker are successfully coupled, the WB service acts as a proxy that re-
lays traffic between them. For the purpose of distributed evaluation, the client
sends an individual to a worker which computes fitness value and sends it back
through WB proxy. After completing the evaluation, the worker reconnects to
the WB service asking for more work within job time limits determined by WB
configuration. The job lifetime cannot exceed the limit specified by the local
Grid site administrator, obtained using MDS.

3.2. Workflow

In this section, we will outline the workflow of the framework. We will
describe the steps necessary to perform any optimization with computationally
intensive evaluations using the WoBinGO framework. Following stages depict
the workflow when using framework in the case of fully automatic WB service
deployment:

1. As the first step, a user has to supply a proper Grid certificate and three
configuration files: a problem configuration file, an algorithm/objective
function configuration file and the WB configuration file. The problem
configuration file contains data regarding an optimization problem, like
the number of decision variables and their ranges, and the number of
objective functions. The algorithm/objective function configuration file
includes the name of the algorithm that is going to be used and the location
of the objective function evaluator. This file also contains data such as
population size, mutation rate etc. In the WB configuration file, the URL
and user credentials of the Grid UI (User Interface) is specified, along with
the list of Grid CEs that are going to be used for job submission, and the
maximum number of jobs allowed on each CE (denoted as pmax). Other
WB parameters can also be specified, including various job timeouts, i.e.
to reach ready state from submitted, to reach busy state from ready state,
job lifetime, idle mode entrance limit etc.

2. According to the data found in the WB configuration file, the master uses
templates to generate scripts and internal configuration files required by
WB. The WB service will be automatically deployed on the node capable
of submitting Grid jobs (UI host specified above). The master establishes
connection with the UI over SFTP, and transfers two file packages and the
deployment script. The first package includes WB itself, including gener-
ated scripts and configuration files. The executable for fitness evaluation
and input files required for its execution (if provided) reside in the second
package.

3. The master then invokes the deployment script whose first task is to cre-
ate valid Globus proxy. The deployment script then stores the above
mentioned fitness evaluator package to a number of Grid storage elements
(SEs), creating replicas. It is worth noting that it is a common case to have
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a complex fitness evaluator which runs a simulation model and requires
a large amount of data. For example, in the case of hydrology problems
requiring finite element computations, the evaluator package sizes ranged
from 50MB up to 500MB. Sometimes, the evaluation package also has to
carry a complete runtime environment in case it’s not available locally
(e.g. Mono framework, recent Python version, etc.). In order to minimize
the time required to transfer data from SE to WNs, nearby replicas are
created. To ensure that the closest replica has been transferred over to
WN, the name of the nearby SE is obtained from MDS. According to [34],
the replication also increases distributed application robustness.

4. Prior to the beginning of the evolutionary search, the master process starts
the WB service. When the service is started, it submits jobs to CEs
which are listed in the WB properties’ file mentioned above. When a
job arrives to a WN and transfers the evaluator package from the closest
SE, the dispatcher is invoked. The dispatcher establishes the connection
to the WB service which then changes the state of a corresponding job
from submitted to ready. If a job and the WB service do not establish
connection after a certain period of time, the job becomes aged. When
a ready job couples with a client, its state is changed to busy. After the
client session has finished, the job becomes reusable.

5. The master then finally begins the evolutionary process. Each time a
generation has to be evaluated, the master sends individuals to the evalu-
ation pool, where they are being queued (Fig. 2). The main thread of the
algorithm remains halted until all individuals, sent to evaluation, are eval-
uated. For each solution to be evaluated, the evaluation pool starts the
WB client in a separate thread. That way, evaluations can be processed
asynchronously, without tying up the primary thread of the evaluation
pool or delaying the processing of subsequent requests.

6. Upon invocation, each client tries to establish communication with the
WB, and when successful, it sends its identification. Then, the WB obtains
a ready worker job, which has earlier been registered as the one being
ready to perform the evaluation. When the corresponding worker process
is found, the client and worker become coupled. The WB service further
acts as a proxy between client and worker, and the WB continues listening
to the new requests. Since there is a vast number of solutions queued in
the evaluation pool, the WB receives hundreds of new requests almost
instantly. It automatically submits new worker jobs to the CEs in order
to quickly fulfill these requests.

7. Once the client and worker have been matched by the WB, the client first
sends the number of parameters needed for the evaluation, and then the
parameters one by one, through the WB proxy, to the worker. The worker
invokes the application that performs the evaluation with parameters re-
ceived from the client. After the evaluation is done, first the number of
results, and then the results themselves are sent back, from the evalua-
tion application to the worker, and further through the WB proxy, finally
reaching the client’s stdin. The client returns the results of the evalua-
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Fig. 2: Workflow of the WoBinGO framework (for the sake of brevity, deployment stages (1-4)
are excluded)

tion and the evaluation pool assigns them to the corresponding individual.
Once all the clients return results and there are no more individuals in the
queue, the evaluation pool sends a signal to the main thread that all eval-
uations are over and that the master is allowed to continue with the rest of
the evolution algorithm. If any client raises exception and the evaluation
of the individual fails, the same individual is sent for the evaluation again.

The worker dispatcher will be restarted upon successfully performed evalu-
ation in order to enable job reusability on the WN. Furthermore, each time the
evaluation is completed, the worker dispatcher checks if the specified job time
limit is exceeded in order to allow other local batching system jobs to get into
the queue.

All jobs are submitted using standard Globus proxy, but the normal user
proxy lifetime of 12-24 hours is usually not long enough to complete optimization
when dealing with real-world problems. As a solution, the user proxy is retrieved
from the MyProxy service on a regular basis.
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4. Results and Discussion

With the WoBinGO framework, the goals of near-optimal usage of Grid re-
sources and high availability of ready jobs are achieved by implementing an
adaptive job submission and pool management policy. These are, however, ful-
filled without undue sacrifice of Grid resources, unlike previous solutions involv-
ing static pilot-job infrastructures. The objective of this section is to determine
whether such an approach affects the performance of the system and to what ex-
tent. In order to achieve this objective, we used both a theoretical and empirical
approach.

4.1. Theoretical Analysis

The speed-up of the WoBinGO system can be computed using the following
formula [35]:

S =
Tser
Tpar

(1)

where Tser denotes the time needed to evolve a population of individuals in serial
and Tpar denotes the time needed to evolve the same population in parallel. For
the population of size n, the time Tser is given by:

Tser = λ(n) + γ(n) (2)

where λ(n) denotes the time required for the execution of the sequential part of
the algorithm, and γ(n) denotes the time required for the execution of the part
of the algorithm that can be parallelized. The sequential part of the algorithm
includes the genetic operators of selection, crossover and mutation performed by
the master, while the evaluation of individuals is done in parallel over a number
of workers. If the number of worker processors is p, then the time Tpar is given
by:

Tpar = λ(n) +
γ(n)

p
+O(n, p) (3)

where O(n, p) denotes the communication overhead. With the WoBinGO frame-
work, the communication overhead is comprised of the overhead induced by
client-worker communication over WB, which is required for establishing con-
nection and exchanging individuals and evaluation results, and the distinctive
WoBinGO’s overhead. In previous distributed optimization frameworks [17],
[23], the number of available workers is static, which provides the possibility
to group work intended for each CPU in a deterministic fashion. Unlike these
frameworks, WoBinGO creates a separate client for each unevaluated individual
which keeps asking the WB service for a ready worker until it gets one. This
overhead is greatly reduced by using an appropriate job submission policy pro-
viding enough ready jobs in the pool; however, it still exists. As will be shown
later, the overhead is maintained within a reasonable range for long enough
evaluations.
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According to the WB’s elastic resource provisioning, the number of workers
changes over time. If p̄ is the average number of processors that perform eval-
uation of n individuals, and teval is the average time needed to evaluate one
individual, then Tpar can be expressed as follows:

Tpar = λ(n) +
nteval
p̄

+O(n, p̄) (4)

If the time required for solving the same optimization problem in serial is ex-
pressed accordingly as Tser = λ(n) + nteval, then the speed-up is:

S =
λ(n) + nteval

λ(n) + nteval

p̄ +O(n, p̄)
(5)

According to Amdahl’s law [35], a theoretical bound on the maximum speed-
up that can be achieved by the parallel algorithm is obtained by assuming
O(n, p̄) = 0 in Eq. (5):

Smax =
λ(n) + nteval

λ(n) + nteval

p̄

(6)

In order to achieve any speed-up, the following must hold:

Tser > Tpar

teval >
p̄

n(p̄− 1)
·O(n, p̄) (7)

For a large number of processors, the equation (7) can be approximated as:

teval >
1

n
·O(n, p̄). (8)

4.2. Empirical results

In this section, we present an empirical study of the WoBinGO framework.
The first aim was to determine its performance in terms of infrastructure utiliza-
tion, achieved speed-up and inherent overhead, while varying teval. The second
aim was to obtain the framework’s speed-up when teval is constant. The third
aim was to estimate to which extent WoBinGO’s characteristic to limit pool
jobs lifetime assists other batching queue users.

Using a simple GA with real-encoded chromosomes we solved the artificial
test problem. The objective function was a dummy function that does nothing
except receive individuals, sleep for teval seconds, and return random fitness
value to the master. Because we have aimed to determine communication over-
head, it did not matter whether the workers were performing calculations or
simply sleeping, it only mattered how long it took them to return their response.

The benchmark was carried out using a single Grid site, in order to put aside
all internetworking effects and explore theoretical limits of the WB framework.
The site AEGIS04-KG consists of 6 nodes, each equipped with 2 AMD 16-core
CPUs and 96GB RAM, totalling 192 processors. The nodes are interconnected
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with standard gigabit Ethernet, OS is Scientific Linux 6.4 x86 64 with a PBS
Torque batching environment and Maui scheduler. As AEGIS04-KG is a part
of EGI infrastructure, the jobs were not submitted by using the batching sys-
tem directly, but by employing EMI/UMD services, including WMS (Workload
Management System), which is not collocated with the site.

The population size during all experiments was set to 500 individuals. The
simple GA was executed for 10 generations and the results reported are the
average of 10 runs. The estimated average time required for the sequential part
of the algorithm (denoted λ(n) in Eq. (4)) is 200 ms.

Table 1: Empirical results obtained by running an artificial problem over WoBinGO using a
simple GA (time is shown in seconds).

teval p̄ Tser Tpar Tser/Tpar O(n, p̄) O(n, p̄)/Tpar[%]

0.5 25 2.5E+03 4.13E+02 6.05 3.13E+02 76
1 49 5.0E+03 4.09E+02 12.23 3.07E+02 75
2 48 1.0E+04 4.37E+02 22.86 2.29E+02 52
5 74 2.5E+04 5.17E+02 48.4 1.78E+02 35

10 80 5.0E+04 7.40E+02 67.52 1.15E+02 16
30 91 1.5E+05 1.76E+03 85.21 1.12E+02 6
60 95 3.0E+05 3.25E+03 92.22 9.51E+01 3

120 96 6.0E+05 6.35E+03 94.55 1.17E+02 2

Table 1 shows the obtained results. The average number of processors p̄ that
have been used to evaluate individuals was determined experimentally. The
WoBinGO framework was configured so that the maximum allowed number of
worker jobs (pmax) is 100. However p̄ varies in accordance with the time teval
taken by a single fitness value calculation. With short evaluations, the workers
quickly become reusable so there is rarely the need to submit new jobs. On the
other hand, with longer evaluations, a significant amount of time passes until
the workers become reusable. Therefore, new jobs must be submitted more
often. Consequently, p̄ has larger values for longer fitness evaluations. Tser
is the time needed to evolve a population of individuals on a single processor
and Tpar is the time needed to evolve the same population in parallel, using p̄
processors. Tser/Tpar is the speed-up achieved by the WoBinGO framework, and
O(n, p̄) is the communication overhead. The value of O(n, p̄) was determined
by substituting Tpar, λ(n), teval and p̄ into Eq. (4).

As can be observed from Table 1, the overheads are quite significant for
smaller problems. This is due to the fact that for problems with short evalua-
tions the frequency of client and worker requests addressed to the WB service is
greater than with longer evaluations. Higher frequency implies longer waiting
for the requests’ fulfillment.

For the problems with the more time-consuming fitness evaluation consid-
erable speed-ups can be achieved, as the overhead becomes almost constant for
teval > 5s.

Therefore, the WoBinGO framework is more suitable for the problems of
relatively large sizes. In order to confirm this result we further experimented
with an artificial test problem where teval = 60s and pmax was varied through
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Fig. 3: Speed-up curve obtained by running an artificial problem over WoBinGO

the following values: 10, 20, 30, 40, 50, 75 and 100. Fig. 3 contains two speed-
up curves: the maximum speed-up curve and the experimental speed-up curve.
The maximum speed-up curve is obtained from Eq. (6) by substituting the
following parameters: n = 5000(= 500 · 10), teval = 60s, λ(n) = 200ms and p̄,
which was determined experimentally. The experimental curve is the average
speed-up for 10 independent runs. As can be seen from Fig. 3, the theoretically
predicted speed-up fits nicely with the observed experimental speed-up. The
difference between these speed-ups comes from the communication overhead,
which is excluded from Eq. (6). With an increasing number of workers, the com-
munication overhead grows linearly, as expected. The experimentally obtained
speed-up curve shows that the framework is suitable for problems with compu-
tationally expensive evaluations which are common in real-world applications.
Furthermore, considering the condition (7), we have experimentally obtained
that there is no point in using the WoBinGO framework for teval < 0.1s.

If hierarchical parallel GA with master-slave demes or PEGA are used in-
stead of master-slave model at the top level (Fig. 1), the same speed-up results
as shown in Fig. 3 will still apply, within experimental error. This statement is
valid because each deme’s evaluation demands will be served by a single Work-
Binder instance, while GA overhead can be neglected due to relatively expensive
fitness evaluation.

The final goal was to benchmark the feature that distinguishes WoBinGO
framework from the previous static pilot job solutions - limited pool job lifetime.
This specific feature enables other batching queue jobs to reach running state
with less delay. In order to estimate that delay, the artificial test problem was
used, as previously. Again, teval was set to 60s, population size was 500 and
the maximum number of processors was 150. Furthermore, the artificial load
of 18 jobs/h was also created, with job submission occurrence that fits the
Poisson distribution. The average number of processors was 1.3 (modeled using
ratio between 1-processor and 4-processor jobs of 9:1), while the duration of
these artificial jobs was 44 minutes on average, respecting Gamma distribution
with the shape factor of 0.344 and the scale factor of 7680 (Fig. 4). For the
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sake of reproducibility, all these values were taken as an approximation of the
real AEGIS04-KG load for the period of two years in production. Additionally,
AEGIS04-KG scheduler was set to keep the sum of processors held by WoBinGO
and the processors held by the artificial job submitter to 150. We measured how
the average waiting time of a job belonging to the artificial load depends on
WoBinGO jobs’ lifetime. Each experimental point resulted from 12h run. The
obtained results are shown in Fig. 5. It can be noticed that for shorter lifetimes
of WoBinGO jobs, the jobs belonging to the artificial load quickly reach running
state. The average waiting time increases for longer lifetimes of WoBinGO jobs,
but does not exceed one hour, even with WoBinGO jobs’ lifetime of two and a
half hours. Considering the fact that with the static pilot job infrastructure, the
jobs belonging to the artificial load would certainly have to wait in the batching
queue till the end of the optimization run (12 hours), shown results are quite
remarkable. The percentage ratio to the waiting time on the static pilot job
infrastructure is shown on the secondary ordinate axis on the right. Even for
very long WoBinGO jobs’ lifetimes, the waiting time of the artificially loaded
jobs is below 8 % of the time they would spend in the batching queue if a static
pilot job infrastructure was used instead of WoBinGO framework.
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Fig. 4: Duration distribution of the jobs belonging to the artificial load

5. Case study

In this section, we will evaluate WoBinGO’s performance when it comes to
solving a complex real-world engineering problem. Multi-objective calibration
of a leakage model at the Visegrad power plant (Republic of Srpska, Bosnia and
Herzegovina) was performed and the achieved results are presented hereafter.

An initial hydraulic model of karst groundwater flow was created based on
previous geological investigations. It consists of a 1D network of conduits that
represent the hydraulic equivalent of the karst under the Visegrad dam. Using a
finite element solver for hydraulic calculations (written in C++), simulation of
the water flow through the model for the given boundary conditions (upstream
and downstream elevation) was performed. In order to estimate underground
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Fig. 5: The average waiting time of a job belonging to the artificial load. The percentage ratio
to the waiting time on the static pilot job infrastructure is shown on secondary ordinate axis.

karst configuration and to calibrate the model, a number of measurements and
experiments using various methods were carried out. A piezometric map was
obtained using piezometers placed in the drill holes, while the flow velocities
were measured at sinks and springs. In order to determine the main flow paths
and dynamics, a number of experiments of salt and paint transport through
the system were performed. Simulation of the salt and paint transport was
executed using a finite difference solver for fluid mass transfer modelling (written
in C#/.NET). The aim of the calibration was the determination of 1D conductor
parameters, so that the described multi-model gives the best possible match to
hydraulic and transport measurements and experiments.

Unknowns in the calibration process were the equivalent radii and conduc-
tivities of 1D elements. The objective functions were to minimize: (1) the root
mean square error (RMSE) of the observed vs. calculated piezometric levels,
(2) the RMSE of the observed vs. calculated velocities at sinks and springs, and
(3) the difference between the calculated and observed time-series that repre-
sent salt and color concentrations at certain locations. Since one of the solvers
used within the process of calibration was implemented in .NET, the evaluation
package had to contain the complete Mono framework which was not available
locally on the worker nodes.

For solving the leakage model calibration problem we used NSGA-II algo-
rithm [33]. The following set of algorithm parameters was adopted: a popula-
tion size of 500 individuals, a maximum of 500 generations, a simulated binary
crossover with a probability of 0.9 and a distribution index of 20, and polyno-
mial mutation with a distribution index of 20 and probability of 1/l, where l is
the chromosome length. All results are taken from 10 independent runs.

The experiments were performed in a Grid environment consisting of the
three clusters represented by the corresponding CEs. Their characteristics are
summarized in Table 2. The last column shows the average time of each com-
puting cluster for evaluating the objective functions’ values of an individual.
Although the difference in computational efforts of the included clusters was
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Table 2: Characteristics of clusters within research testbed

Site Nodes CPU Type RAM/Node OS/LRMS teval(s)

AEGIS04-KG 5 2x16 core Opt. 96 GB SL6.4 x86 64 68.12
6276@2.3GHz PBS Torque

AEGIS01-PHY- 88 2x4 core Xeon 8 GB SL6.4 x86 64 66.65
SCL E5345@2.33GHz PBS Torque

AEGIS03-ELEF- 8 2x4 core Xeon 4 GB SL6.4 x86 64 65.77
LEDA E5420@2.5GHz PBS Torque

not very significant, it was taken into account when Tser was calculated. Hence,
the following formula was used:

Tser = λ(n) + n
3∑

i=1

p̄i
p̄
tieval (9)

Where: n is the population size; tieval denotes the average time needed to
evaluate the objective functions’ values of an individual by the ith computing
cluster; p̄i

p̄ is the share of the average number of processors that are performing
the evaluations on the ith cluster within the total average number of processors
used by all three clusters.

Table 3 summarizes the obtained results. Due to WB’s elastic behaviour, the
value of Tser changes in accordance to the Eq. (9). Tpar is the experimentally
obtained wall-clock time needed to evolve 500 generations of 500 individuals in
parallel. Fig. 6 provides visual representation of the speed-up achieved when
solving the considered real-world problem. Additionally, the wall-clock time is
shown.

Table 3: Empirical results obtained by running a real-world calibration problem of a leakage
model at the Visegrad power plant over WoBinGO using an NSGA-II algorithm (time is shown
in seconds).

cluster1.csk.kg.ac.rs cream.ipb.ac.rs grid01.elfak.ni.ac.rs
p̄ Tser Tpar Tser/Tpar

p̄1 p̄2 p̄3

8 10 9 27 1.67E+07 7.25E+05 23.02
17 18 19 54 1.67E+07 3.35E+05 49.91
20 23 23 66 1.67E+07 2.72E+05 61.35
29 35 32 96 1.67E+07 1.86E+05 89.90
41 43 32 117 1.67E+07 1.48E+05 113.18
58 88 8 154 1.68E+07 1.11E+05 150.87
78 119 22 219 1.68E+07 7.87E+04 213.16

123 244 59 426 1.67E+07 4.18E+04 400.37

The main advantage of the WoBinGO framework is the ability to elasti-
cally allocate worker jobs on the computing Grid according to clients’ requests.
Infrastructure utilization can be further analysed if we consider Fig. 7. The
number of processors per cluster performing the evaluation tasks through 10
generations is shown in Fig. 7a. The WoBinGO framework was configured to
keep the sum of busy, ready, and submitted worker jobs at 50 per each cluster.
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Fig. 6: The average wall-clock time and speed-up of the calibration problem of the leakage
model at the Visegrad power plant over WoBinGO

The total number of ready, busy and submitted jobs for the experimental setup
described above is shown in Fig. 7b.
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Fig. 7: Computational infrastructure utilization

While there are no clients’ requests, WoBinGO keeps the number of ready
jobs at the predefined minimum, utilizing infrastructure resources in an efficient
manner. At the moment the clients start addressing the WB service with eval-
uation requests, a number of new jobs are instantly submitted, soon becoming
busy fulfilling clients’ demands.

While evaluating a generation, the number of busy jobs stays high. At the
end of the first generation, for a very short time, clients’ job requests drop to
zero and so does the number of busy jobs. These worker jobs immediately reach
ready state, being soon employed for the evaluation of the next generation. It
can also be noticed that the number of submitted jobs is non-zero throughout
the entire run. This is because WoBinGO attempts to reach the preferred load
on each cluster (50 workers), but some clusters do not respond due to their
occupancy and/or configuration.
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According to the presented case study results, it is obvious that despite
WoBinGO’s elastic provisioning of computing resources, it provides significant
speed-up when dealing with problems that have computationally expensive eval-
uations.

6. Conclusion and future work

In this paper, we have presented the WoBinGO framework for solving large
optimization problems over Grid or HPC clusters. The framework provides a
novel, elastic approach in utilizing computing resources in accordance with the
dynamics of the users’ requests. Unnecessary reservation of computing resources
is avoided through flexible allocation and limited lifetime worker jobs. WoB-
inGO conceals the complexity of the underlying computing infrastructure from
the user, relieving him/her of the burden of obtaining computing resources and
dealing with various middlewares.

To evaluate the efficiency of the framework, we have conducted a theoretical
analysis of the maximum achievable speed-up, as well as obtained the prac-
tical conditions that have to be fulfilled in order to achieve useful speed-up.
Empirical studies using a dummy problem have been performed in order to
determine WoBinGO’s performance in terms of infrastructure utilization, the
achieved speed-up and inherent overhead. The results show that we can ob-
tain considerable speed-ups for the problems of large sizes. What distinguishes
our framework the most is the significant reduction of the waiting time of the
artificially loaded jobs that compete for the computing resources with WoB-
inGO generated jobs. Compared to a static pilot-job infrastructure, WoBinGO
enables other batching jobs to reach running state more than 10 times faster.

The case study concerning the leakage model calibration further confirms
that the framework is suitable for solving optimization problems with compu-
tationally expensive evaluations which are common in real-world applications.

In the future, the authors will improve the framework in order to employ
its inherent elasticity to independently manage cloud instances according to the
system load.
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