Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/11914
Назив: Surface roughness prediction by extreme learning machine constructed with abrasive water jet
Аутори: Ćojbašić, Žarko
Petković D.
Shamshirband S.
Tong C.
Ch, Sudheer
Jankovic P.
Duc̈ić N.
Baralić J.
Датум издавања: 2016
Сажетак: © 2015 Elsevier Inc. All rights reserved. In this study, the novel method based on extreme learning machine (ELM) is adapted to estimate roughness of surface machined with abrasive water jet. Roughness of surface is one of the main attributes of quality of products derived from water jet processing, and directly depends on the cutting parameters, such as thickness of the workpiece, abrasive flow rate, cutting speed and others. In this study, in order to provide data on influence of parameters on surface roughness, extensive experiments were carried out for different cutting regimes. Measured data were used to model the process by using ELM model. Estimation and prediction results of ELM model were compared with genetic programming (GP) and artificial neural networks (ANNs) models. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the ELM approach in comparison with GP and ANN. Moreover, achieved results indicate that developed ELM models can be used with confidence for further work on formulating novel model predictive strategy for roughness of the surface machined with abrasive water jet. In conclusion, it is conclusively found that application of ELM is particularly promising as an alternative method to estimate the roughness of the surface machined with abrasive water jet.
URI: https://scidar.kg.ac.rs/handle/123456789/11914
Тип: article
DOI: 10.1016/j.precisioneng.2015.06.013
ISSN: 0141-6359
SCOPUS: 2-s2.0-84948719795
Налази се у колекцијама:University Library, Kragujevac

Број прегледа

61

Број преузимања

4

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.