Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/12279
Title: A decreasing sequence of upper bounds for the Laplacian energy of a tree
Authors: Carmona J.
Gutman, Ivan
Tamblay N.
Robbiano M.
Issue Date: 2014
Abstract: Let R be a nonnegative Hermitian matrix. The energy of R, denoted by E(R), is the sum of absolute values of its eigenvalues. We construct an increasing sequence that converges to the Perron root of R. This sequence yields a decreasing sequence of upper bounds for E(R). We then apply this result to the Laplacian energy of trees of order n, namely to the sum of the absolute values of the eigenvalues of the Laplacian matrix, shifted by -2(n-1)/n. © 2014 Elsevier Inc.
URI: https://scidar.kg.ac.rs/handle/123456789/12279
Type: article
DOI: 10.1016/j.laa.2014.01.013
ISSN: 0024-3795
SCOPUS: 2-s2.0-84894234020
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

476

Downloads(s)

9

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.