Please use this identifier to cite or link to this item:
Title: Segmentation for the enhancement of microcalcifications in digital mammograms
Authors: Milosevic, Marina
Jankovic, Dragan
Peulic A.
Issue Date: 2014
Abstract: © 2014 - IOS Press and the authors. All rights reserved. Microcalcification clusters appear as groups of small, bright particles with arbitrary shapes on mammographic images. They are the earliest sign of breast carcinomas and their detection is the key for improving breast cancer prognosis. But due to the low contrast of microcalcifications and same properties as noise, it is difficult to detect microcalcification. This work is devoted to developing a system for the detection of microcalcification in digital mammograms. After removing noise from mammogram using the Discrete Wavelet Transformation (DWT), we first selected the region of interest (ROI) in order to demarcate the breast region on a mammogram. Segmenting region of interest represents one of the most important stages of mammogram processing procedure. The proposed segmentation method is based on a filtering using the Sobel filter. This process will identify the significant pixels, that belong to edges of microcalcifications. Microcalcifications were detected by increasing the contrast of the images obtained by applying Sobel operator. In order to confirm the effectiveness of this microcalcification segmentation method, the Support Vector Machine (SVM) and k-Nearest Neighborhood (k-NN) algorithm are employed for the classification task using cross-validation technique.
Type: article
DOI: 10.3233/THC-140841
ISSN: 0928-7329
SCOPUS: 2-s2.0-84911095838
Appears in Collections:Faculty of Technical Sciences, Čačak

Page views(s)




Files in This Item:
File Description SizeFormat 
  Restricted Access
29.86 kBAdobe PDFThumbnail

Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.