Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/10012
Назив: Application of feedforward neural network in the study of dissociated gas flow along the porous wall
Аутори: Rankovic, Vesna
Savić, Slobodan
Датум издавања: 2011
Сажетак: This paper concerns the use of feedforward neural networks (FNN) for predicting the nondimensional velocity of the gas that flows along a porous wall. The numerical solution of partial differential equations that govern the fluid flow is applied for training and testing the FNN. The equations were solved using finite differences method by writing a FORTRAN code. The Levenberg-Marquardt algorithm is used to train the neural network. The optimal FNN architecture was determined. The FNN predicted values are in accordance with the values obtained by the finite difference method (FDM). The performance of the neural network model was assessed through the correlation coefficient (r), mean absolute error (MAE) and mean square error (MSE). The respective values of r, MAE and MSE for the testing data are 0.9999, 0.0025 and 1.9998·10 -5. © 2010 Elsevier Ltd. All rights reserved.
URI: https://scidar.kg.ac.rs/handle/123456789/10012
Тип: article
DOI: 10.1016/j.eswa.2011.04.039
ISSN: 0957-4174
SCOPUS: 2-s2.0-79958016964
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

455

Број преузимања

11

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.