Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/10105
Title: Lower bounds for Estrada index and Laplacian Estrada index
Authors: Bamdad H.
Ashraf F.
Gutman, Ivan
Issue Date: 2010
Abstract: Let G be an n-vertex graph. If λ1, λ 2,⋯, λn and μ1, μ 2,⋯, μ n are the ordinary (adjacency) eigenvalues and the Laplacian eigenvalues of G, respectively, then the Estrada index and the Laplacian Estrada index of G are defined as EE (G) = Σni=1 eλi and LEE (G) = Σni=1 eλi, respectively. Some new lower bounds for EE and LEE are obtained and shown to be the best possible. © 2010 Elsevier Ltd. All rights reserved.
URI: https://scidar.kg.ac.rs/handle/123456789/10105
Type: article
DOI: 10.1016/j.aml.2010.01.025
ISSN: 0893-9659
SCOPUS: 2-s2.0-79958848614
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

543

Downloads(s)

7

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.