Please use this identifier to cite or link to this item:
https://scidar.kg.ac.rs/handle/123456789/10160
Title: | A fully benzenoid system has a unique maximum cardinality resonant set |
Authors: | Gutman, Ivan salem, khaled |
Issue Date: | 2010 |
Abstract: | A benzenoid system is a 2-connected plane graph such that its each inner face is a regular hexagon of side length 1. A benzenoid system is Kekuléan if it has a perfect matching. Let P be a set of hexagons of a Kekuléan benzenoid system B. The set P is called a resonant set of B if the hexagons in P are pair-wise disjoint and the subgraph B-P (obtained by deleting from B the vertices of the hexagons in P) is either empty or has a perfect matching. It was shown (Gutman in Wiss. Z. Thechn. Hochsch. Ilmenau 29:57-65, 1983; Zheng and Chen in Graphs Comb. 1:295-298, 1985) that for every maximum cardinality resonant set P of a Kekuléan benzenoid system B, the subgraph B-P is either empty or has a unique perfect matching. A Kekuléan benzenoid system B is said to be fully benzenoid if there exists a maximum cardinality resonant set P of B, such that the subgraph B-P is empty. It is shown that a fully benzenoid system has a unique maximum cardinality resonant set, a well-known statement that, so far, has remained without a rigorous proof. © 2009 Springer Science+Business Media B.V. |
URI: | https://scidar.kg.ac.rs/handle/123456789/10160 |
Type: | article |
DOI: | 10.1007/s10440-009-9550-1 |
ISSN: | 0167-8019 |
SCOPUS: | 2-s2.0-77956759153 |
Appears in Collections: | Faculty of Science, Kragujevac |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
PaperMissing.pdf Restricted Access | 29.86 kB | Adobe PDF | View/Open |
Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.