Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/10250
Назив: Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia
Аутори: Rankovic, Vesna
Radulović, Jasna
Radojevic, Ivana
Ostojić, Aleksandar
Čomić, Ljiljana
Датум издавања: 2010
Сажетак: The objective of this study is to develop a feedforward neural network (FNN) model to predict the dissolved oxygen in the Gruža Reservoir, Serbia. The neural network model was developed using experimental data which are collected during a three years. The input variables of the neural network are: water pH, water temperature, chloride, total phosphate, nitrites, nitrates, ammonia, iron, manganese and electrical conductivity. Sensitivity analysis is used to determine the influence of input variables on the dependent variable. The most effective inputs are determined as pH and temperature, while nitrates, chloride and total phosphate are found to be least effective parameters. The Levenberg-Marquardt algorithm is used to train the FNN. The optimal FNN architecture was determined. The FNN architecture having 15 hidden neurons gives the best choice. Results of FNN models have been compared with the measured data on the basis of correlation coefficient (r), mean absolute error (MAE) and mean square error (MSE). Comparing the modelled values by FNN with the experimental data indicates that neural network model provides accurate results. © 2009 Elsevier B.V. All rights reserved.
URI: https://scidar.kg.ac.rs/handle/123456789/10250
Тип: article
DOI: 10.1016/j.ecolmodel.2009.12.023
ISSN: 0304-3800
SCOPUS: 2-s2.0-77649190348
Налази се у колекцијама:Faculty of Engineering, Kragujevac
Faculty of Science, Kragujevac

Број прегледа

988

Број преузимања

14

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.