Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/10720
Title: Combinatorics of unavoidable complexes
Authors: Marija Jelić Milutinović
Jojic D.
Timotijević, Marinko
Vrećica S.
Živaljević R.
Issue Date: 2020
Abstract: © 2019 Elsevier Ltd The partition number π(K) of a simplicial complex K⊆2[n] is the minimum integer k such that for each partition A1⊎…⊎Ak=[n] of [n] at least one of the sets Ai is in K. A complex K is r-unavoidable if π(K)≤r. Simplicial complexes with small π(K) are important for applications of the “constraint method” (Blagojević et al., 2014) and serve as an input for the “index inequalities” (Jojić et al., 2018), such as (1.1). We introduce a “threshold characteristic” ρ(K) of K (Section 3) and define a fractional (linear programming) relaxation of π(K) (Section 4), which allows us to systematically generate interesting examples of r-unavoidable complexes and pave the way for new results of Van Kampen–Flores–Tverberg type.
URI: https://scidar.kg.ac.rs/handle/123456789/10720
Type: article
DOI: 10.1016/j.ejc.2019.103004
ISSN: 0195-6698
SCOPUS: 2-s2.0-85071339391
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

438

Downloads(s)

15

Files in This Item:
File Description SizeFormat 
10.1016-j.ejc.2019.103004.pdf498.21 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons