Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/10830
Назив: SEM–ANN based research of factors’ impact on extended use of ERP systems
Аутори: Sternad Zabukovšek S.
Kalinić, Zoran
Bobek S.
Tominc P.
Датум издавања: 2019
Сажетак: © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. The main objective of this research is to test the hypothesis that the two-step structural equation modelling (SEM) and artificial neural network (ANN) approach enables better in-depth research results as compared to the single-step SEM approach. This approach was used to determine which factors have statistically significant influence on extended use of enterprise resource planning (ERP) systems. The research model and the hypothesized relationships are based on the technology acceptance model (TAM). Majority of research on ERP acceptance has been conducted with SEM based research approaches. The purpose of this paper is to extend basic TAM research which is traditionally based on SEM technique with ANN approach. In the first step of the present research the SEM technique was used to determine which factors have statistically significant influence on extended use of the ERP systems; in the second step, ANN models were used to rank the relative influence of significant predictors obtained from SEM. The main finding of this research is that the use of multi-analytical two step SEM–ANN approach provides two important benefits. First, it enables additional verification of the results obtained by the SEM analysis. Second, this approach enables capturing not only linear but also complex nonlinear relationships between antecedents and dependent variables and more precise measure of relative influence of each predictor.
URI: https://scidar.kg.ac.rs/handle/123456789/10830
Тип: article
DOI: 10.1007/s10100-018-0592-1
ISSN: 1435-246X
SCOPUS: 2-s2.0-85056345253
Налази се у колекцијама:Faculty of Economics, Kragujevac

Број прегледа

520

Број преузимања

19

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.