Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/11101
Назив: Optimal parameterization of Kalman filter based three-phase dynamic state estimator for active distribution networks
Аутори: Ćetenović, Dragan
Ranković, Aleksandar
Датум издавања: 2018
Сажетак: © 2018 Elsevier Ltd This paper presents a new method for the assessment of the process noise covariance matrix for three-phase dynamic state estimation in unbalanced active distribution networks which operate under normal conditions. The assessment is done in order to minimize the estimation error. The proposed assessment method, based on minimization of a particular cost function, enables the a priori assessment of covariance matrix by extracting information from previously observed measurements, without the need to simulate the true state of the system. The method was applied on two commonly used Kalman filter based estimation algorithms in nonlinear systems: Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). A comparative analysis was performed between two different cost functions based on average root mean square of innovations and maximum likelihood technique. Also, the importance of determining initial state vector and its error covariance matrix needed for the initialization of dynamic state estimation was examined, as well as the ability of UKF and EKF to handle measurement nonlinearities. The analysis was carried out and the proposed method was verified on modified IEEE 13- and 37-bus distribution test systems.
URI: https://scidar.kg.ac.rs/handle/123456789/11101
Тип: article
DOI: 10.1016/j.ijepes.2018.04.008
ISSN: 0142-0615
SCOPUS: 2-s2.0-85045472522
Налази се у колекцијама:Faculty of Technical Sciences, Čačak

Број прегледа

425

Број преузимања

7

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.