Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/11264
Назив: Multi-separable dictionary learning
Аутори: Zhang F.
Cen Y.
Zhao R.
Hu S.
Mladenovic, Vladimir
Датум издавања: 2018
Сажетак: © 2017 Elsevier B.V. As the extensive applications of sparse representation, the methods of dictionary learning have received widespread attentions. In this paper, we propose a multi-separable dictionary learning (MSeDiL) algorithm for sparse representation, which is based on the Lagrange Multiplier and the QR decomposition. Different with the traditional dictionary learning methods, the training samples are clustered firstly. Then the separable dictionaries for each cluster are optimized by the QR decomposition. The efficiency of the reconstruction process is improved in our algorithm because of the under-determinedness of the dictionaries for each cluster. Experimental results show that with the similar PSNR (Peak Signal to Noise Ratio) and SSIM (Structure Similarity Index), the reconstruction speed of our algorithm is much faster than other dictionary learning methods, especially when the size of samples is large.
URI: https://scidar.kg.ac.rs/handle/123456789/11264
Тип: article
DOI: 10.1016/j.sigpro.2017.06.023
ISSN: 0165-1684
SCOPUS: 2-s2.0-85021197238
Налази се у колекцијама:Faculty of Technical Sciences, Čačak

Број прегледа

423

Број преузимања

7

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.