Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/11556
Title: Relations between degrees, conjugate degrees and graph energies
Authors: das, kinkar
Mojallal, S. Ahmad
Gutman, Ivan
Issue Date: 2017
Abstract: © 2016 Elsevier Inc. Let G be a simple graph of order n with maximum degree Δ and minimum degree δ. Let (d)=(d1,d2,…,dn) and (d⁎)=(d1⁎,d2⁎,…,dn⁎) be the sequences of degrees and conjugate degrees of G. We define π=∑i=1ndi and π⁎=∑i=1ndi⁎, and prove that π⁎≤LEL≤IE≤π where LEL and IE are, respectively, the Laplacian-energy-like invariant and the incidence energy of G. Moreover, we prove that π−π⁎>(δ/2)(n−Δ) for a certain class of graphs. Finally, we compare the energy of G and π, and present an upper bound for the Laplacian energy in terms of degree sequence.
URI: https://scidar.kg.ac.rs/handle/123456789/11556
Type: article
DOI: 10.1016/j.laa.2016.11.009
ISSN: 0024-3795
SCOPUS: 2-s2.0-84999018388
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

441

Downloads(s)

10

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.