Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/11590
Назив: Solving medical classification problems with RBF neural network and filter methods
Аутори: Novakovic J.
Alempije, Veljovic
Датум издавања: 2017
Сажетак: Copyright © 2017 Inderscience Enterprises Ltd. This paper evaluates classification accuracy of radial basis function (RBF) neural network and filter methods for feature selection in medical datasets. To improve the diagnostic procedure in the daily routine and to avoid wrong diagnosis, machine learning methods can be used. Diagnosis of tumours, heart disease, hepatitis, liver and Parkinson's diseases are a few of the medical problems which we have used in artificial neural networks. The main objective of this paper is to show that it is possible to improve the performance of the system for inductive learning rules with RBF neural network for medical classification problems, using the filter methods for feature selections. The aim of this research is also to present and compare different algorithm approach for the construction system that learns from experience and makes decisions and predictions and reduce the expected number or percentage of errors.
URI: https://scidar.kg.ac.rs/handle/123456789/11590
Тип: conferenceObject
DOI: 10.1504/IJRIS.2017.10009600
ISSN: 1755-0556
SCOPUS: 2-s2.0-85038835099
Налази се у колекцијама:Faculty of Technical Sciences, Čačak

Број прегледа

437

Број преузимања

15

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.