Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/11603
Назив: Classification for microarray data based on K-means clustering combined with modified single-to-noise-ratio based on graph energy
Аутори: Yu L.
Zhang, Yusen
Jian G.
Gutman, Ivan
Датум издавања: 2017
Сажетак: © 2017 American Scientific Publishers. This paper proposes a new classification for microarray data which utilizes K-means clustering combined with modified single-to-noise-ratio based on graph energy (SNRGE) method. This method is employed to select a small subset of characteristic features from DNA microarray data. Comparing with the single-to-noise-ratio (SNR) method proposed by Golub, it demonstrates that the SNRGES outperforms SNR method. SNRGE obtains significant improvement on the classification result via SNRGES in contrast with other SNR formulas, and the result shows that the use of SNRGE formula is critical in eliminating irrelevant features. As compared to other feature selection methods via five classifiers, the SNRGES yields better classification performance. On available training examples from four microarray databases, we indicate that SNRGES is capable of achieving better accuracies than previous studies, and is able to effectively remove redundant features and obtain efficient sets for sample classification purposes.
URI: https://scidar.kg.ac.rs/handle/123456789/11603
Тип: article
DOI: 10.1166/jctn.2017.6248
ISSN: 1546-1955
SCOPUS: 2-s2.0-85014892412
Налази се у колекцијама:Faculty of Medical Sciences, Kragujevac

Број прегледа

545

Број преузимања

13

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.