Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/11646
Назив: Web-based intelligent system for predicting apricot yields using artificial neural networks
Аутори: Blagojević, Marija
Blagojevic M.
Licina V.
Датум издавања: 2016
Сажетак: © 2016 Elsevier B.V. This paper shows the use of artificial neural networks and the PDCA (Plan, Do, Check, Act) method for predicting the apricot yield per hectare. The goal of the paper is to determine the possibilities for using artificial neural networks to predict the apricot yield per hectare if the following items are used as input parameters: amount of fertilizer, length of shoots, thickness of shoots, beginning of the harvest and fruit mass. The goal of the paper also includes creation of a web-based application that displays final research results, obtained through neural networks. The PDCA method was used in order to ensure the control and continual improvement of the process. The results point to the possibility of successful application of the above mentioned methods, highlighting the limitations, advantages and shortcomings. Future work relates to the successful application of association rule mining in order to detect the relationship between the apricot yield and other parameters.
URI: https://scidar.kg.ac.rs/handle/123456789/11646
Тип: article
DOI: 10.1016/j.scienta.2016.10.032
ISSN: 0304-4238
SCOPUS: 2-s2.0-84994034483
Налази се у колекцијама:Faculty of Technical Sciences, Čačak

Број прегледа

452

Број преузимања

13

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.