Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/11680
Назив: | On some degree-and-distance-based graph invariants of trees |
Аутори: | Gutman I. Furtula, Boris das, kinkar |
Датум издавања: | 2016 |
Сажетак: | © 2016 Elsevier Inc. Let G be a connected graph with vertex set V(G). For u, v ∈ V(G), d(v) and d(u, v) denote the degree of the vertex v and the distance between the vertices u and v. A much studied degree-and-distance-based graph invariant is the degree distance, defined as DD=∑{u,v}⊆V(G)[d(u)+d(v)]d(u,v). A related such invariant (usually called Gutman index) is ZZ=∑{u,v}⊆V(G)[d(u)·d(v)]d(u,v). If G is a tree, then both DD and ZZ are linearly related with the Wiener index W=∑{u,v}⊆V(G)d(u,v). We examine the difference DD-ZZ for trees and establish a number of regularities. |
URI: | https://scidar.kg.ac.rs/handle/123456789/11680 |
Тип: | article |
DOI: | 10.1016/j.amc.2016.04.040 |
ISSN: | 0096-3003 |
SCOPUS: | 2-s2.0-84969130561 |
Налази се у колекцијама: | Faculty of Science, Kragujevac |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
PaperMissing.pdf Ограничен приступ | 29.86 kB | Adobe PDF | Погледајте |
Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.