Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/11718
Назив: A kernel-based clustering method for gene selection with gene expression data
Аутори: Chen H.
Zhang, Yusen
Gutman, Ivan
Датум издавања: 2016
Сажетак: © 2016 Elsevier Inc. Gene selection is important for cancer classification based on gene expression data, because of high dimensionality and small sample size. In this paper, we present a new gene selection method based on clustering, in which dissimilarity measures are obtained through kernel functions. It searches for best weights of genes iteratively at the same time to optimize the clustering objective function. Adaptive distance is used in the process, which is suitable to learn the weights of genes during the clustering process, improving the performance of the algorithm. The proposed algorithm is simple and does not require any modification or parameter optimization for each dataset. We tested it on eight publicly available datasets, using two classifiers (support vector machine, k-nearest neighbor), compared with other six competitive feature selectors. The results show that the proposed algorithm is capable of achieving better accuracies and may be an efficient tool for finding possible biomarkers from gene expression data.
URI: https://scidar.kg.ac.rs/handle/123456789/11718
Тип: article
DOI: 10.1016/j.jbi.2016.05.007
ISSN: 1532-0464
SCOPUS: 2-s2.0-84969920124
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

471

Број преузимања

12

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.