Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/11733
Назив: Optimal experiment design for identification of ARX models with constrained output in non-Gaussian noise
Аутори: Stojanović, Vladimir
Nedić, Novak
Pršić, Dragan
Dubonjic, Ljubisa
Датум издавања: 2016
Сажетак: © 2016 Elsevier Inc. All rights reserved. The identification of ARX models with constrained output variance in the presence of non-Gaussian distribution of measurements is proposed in this paper. In the presence of non-Gaussian noise, the Masreliez-Martin filter (robust Kalman filter) is the natural frame for identification of model parameters. For the purpose of increasing the practical value of the filter, a heuristic modification is performed. Also, an optimal input is obtained by a minimum variance controller with a Gaussian reference signal. A fundamental issue in experiment design is that the optimal input in general depends on system parameters to be estimated. In order to realize obtained optimal input, authors have proposed a two-stage adaptive procedure, where one iterates between parameter estimation, on the one side, and experiment design using the current parameter estimates, on the other. The practical behavior of new approach to optimal input design for robust identification of ARX models is shown by intensive simulations.
URI: https://scidar.kg.ac.rs/handle/123456789/11733
Тип: article
DOI: 10.1016/j.apm.2016.02.014
ISSN: 0307-904X
SCOPUS: 2-s2.0-84977969477
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

703

Број преузимања

12

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.