Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/11738
Назив: A self-tuning system for dam behavior modeling based on evolving artificial neural networks
Аутори: Stojanović, Boban
Milivojevic̀ M.
Milivojevic N.
Antonijević Đ.
Датум издавања: 2016
Сажетак: © 2016 Elsevier Ltd. All rights reserved. Most of the existing methods for dam behavior modeling presuppose temporal immutability of the modeled structure and require a persistent set of input parameters. In real-world applications, permanent structural changes and failures of measuring equipment can lead to a situation in which a selected model becomes unusable. Hence, the development of a system capable to automatically generate the most adequate dam model for a given situation is a necessity. In this paper, we present a self-tuning system for dam behavior modeling based on artificial neural networks (ANN) optimized for given conditions using genetic algorithms (GA). Throughout an evolutionary process, the system performs near real-time adjustment of ANN architecture according to currently active sensors and a present measurement dataset. The model was validated using the Grancarevo dam case study (at the Trebisnjica river located in the Republic of Srpska), where radial displacements of a point inside the dam structure have been modeled as a function of headwater, temperature, and ageing. The performance of the system was compared to the performance of an equivalent hybrid model based on multiple linear regression (MLR) and GA. The results of the analysis have shown that the ANN/GA hybrid can give rather better accuracy compared to the MLR/GA hybrid. On the other hand, the ANN/GA has shown higher computational demands and noticeable sensitivity to the temperature phase offset present at different geographical locations.
URI: https://scidar.kg.ac.rs/handle/123456789/11738
Тип: article
DOI: 10.1016/j.advengsoft.2016.02.010
ISSN: 0965-9978
SCOPUS: 2-s2.0-84960962702
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

469

Број преузимања

13

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.