Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/11925
Назив: Assessment of bone stress intensity factor using artificial neural networks
Аутори: Vukicevic Arso
Jovicic, Gordana
Jovicic, Nebojsa
Milosevic Z.
Filipovic, Nenad
Датум издавања: 2015
Сажетак: © 2015 IEEE. Assessment of the risks associated with bone injures is nontrivial because fragility of human bones is varying with aging. Since only a limited number of experiments have been performed on the specimens from human donors, there is limited number of fracture resistance curves available in literature. This study proposes a decision support system for the assessment of bone stress intensity factor by using artificial neural networks (ANN). The procedure estimates stress intensity factor according to patient's age and diagnosed crack length. ANN was trained using the experimental data available in literature. The automated training of ANN was performed using evolutionary assembled Artificial Neural Networks. The obtained results showed good correlation with the experimental data, with potential for further improvements and applications.
URI: https://scidar.kg.ac.rs/handle/123456789/11925
Тип: conferenceObject
DOI: 10.1109/BIBE.2015.7367680
SCOPUS: 2-s2.0-84962809856
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

503

Број преузимања

38

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.