Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/12029
Назив: Recursive identification of multivariable ARX models in the presence of a priori information: Robustness and regularization
Аутори: Filipovic, Vojislav
Датум издавања: 2015
Сажетак: © 2015 Elsevier B.V. All rights reserved. This paper considers the nonlinear recursive algorithm for the identification of multivariable ARX models (autoregressive with exogenous input). It is assumed that the following a priori information is available: a distribution class to which the stochastic disturbance belongsa distribution class to which unknown parameters of ARX model belong A priori information (a) allows a description of outliers (large realizations of the stochastic process which are inconsistent with the largest part of population of observations) and introduces the nonlinear transformation of the prediction error in the recursive algorithm. A priori information (b) defines the initial conditions of the algorithm (for the vector of unknown parameters and the matrix gain) which increases the convergence speed in initial iterations. This intervention in the algorithm represents its regularization. Regularization problems are recently actualized thanks to statistical learning theory. Thanks to a priori information, the considered recursive algorithm is robust with respect to the uncertainty of statistical characteristics of disturbances and has the increased convergence speed in initial iterations. It is formulated theorem for convergence of estimated parameters with probability one. Simulation results illustrate the practical behavior of the algorithm.
URI: https://scidar.kg.ac.rs/handle/123456789/12029
Тип: article
DOI: 10.1016/j.sigpro.2015.04.016
ISSN: 0165-1684
SCOPUS: 2-s2.0-84929340799
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

447

Број преузимања

9

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.