Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/12276
Назив: Predicting piezometric water level in dams via artificial neural networks
Аутори: Rankovic, Vesna
Novaković, Aleksandar
Grujovic, Nenad
Divac, dejan
Milivojevic, Nikola
Датум издавања: 2014
Сажетак: The safety control of dams is based on measurements of parameters of interest such as seepage flows, seepage water clarity, piezometric levels, water levels, pressures, deformations or movements, temperature variations, loading conditions, etc. Interpretation of these large sets of available data is very important for dam health monitoring and it is based on mathematical models. Modelling seepage through geological formations located near the dam site or dam bodies is a challenging task in dam engineering. The objective of this study is to develop a feedforward neural network (FNN) model to predict the piezometric water level in dams. An improved resilient propagation algorithm has been used to train the FNN. The measured data have been compared with the results of FNN models and multiple linear regression (MLR) models that have been widely used in analysis of the structural dam behaviour. The FNN and MLR models have been developed and tested using experimental data collected during 9 years. The results of this study show that FNN models can be a powerful and important tool which can be used to assess dams. © 2013 Springer-Verlag London.
URI: https://scidar.kg.ac.rs/handle/123456789/12276
Тип: article
DOI: 10.1007/s00521-012-1334-2
ISSN: 0941-0643
SCOPUS: 2-s2.0-84900672832
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

503

Број преузимања

10

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.