Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/12420
Назив: Comparison of classical statistical methods and artificial neural network in traffic noise prediction
Аутори: Nedić, Vladimir
Despotović, Danijela
Cvetanović A.
Despotovic, Milan
Babić A.
Датум издавања: 2014
Сажетак: Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. The output variable of the network is the equivalent noise level in the given time period Leq. Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. © 2014 Elsevier Inc.
URI: https://scidar.kg.ac.rs/handle/123456789/12420
Тип: article
DOI: 10.1016/j.eiar.2014.06.004
ISSN: 0195-9255
SCOPUS: 2-s2.0-84904268330
Налази се у колекцијама:Faculty of Economics, Kragujevac
Faculty of Engineering, Kragujevac

Број прегледа

776

Број преузимања

12

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.