Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/12607
Назив: | Adaptive optimization algorithm for nonlinear Markov jump systems with partial unknown dynamics |
Аутори: | Fang H. Zhu G. Stojanović, Vladimir Nie R. He J. Luan X. LIU F. |
Датум издавања: | 2021 |
Сажетак: | © 2021 John Wiley & Sons, Ltd. An online adaptive optimal control problem for a class of nonlinear Markov jump systems (MJSs) is studied. It is worth noting that the dynamic information of MJSs is partially unknown. Applying the neural network linear differential inclusion techniques, the nonlinear terms in MJSs are approximately converted to linear forms. By using subsystem transformation schemes, we can transfer the nonlinear MJSs to N new coupled linear subsystems. Then a new online policy iteration algorithm is put forward to obtain the adaptive optimal controller. Some theorems are given afterward to ensure the convergence of the new algorithm. At last, a simulation example is provided to verify the applicability of the algorithm. |
URI: | https://scidar.kg.ac.rs/handle/123456789/12607 |
Тип: | article |
DOI: | 10.1002/rnc.5350 |
ISSN: | 1049-8923 |
SCOPUS: | 2-s2.0-85100114424 |
Налази се у колекцијама: | Faculty of Mechanical and Civil Engineering, Kraljevo |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
PaperMissing.pdf Ограничен приступ | 29.86 kB | Adobe PDF | Погледајте |
Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.