Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/12624
Назив: Zero-Shot Learning to Index on Semantic Trees for Scalable Image Retrieval
Аутори: Kan S.
Cen Y.
Cen Y.
Mladenovic, Vladimir
Li, Yidong
He Z.
Датум издавања: 2021
Сажетак: © 1992-2012 IEEE. In this study, we develop a new approach, called zero-shot learning to index on semantic trees (LTI-ST), for efficient image indexing and scalable image retrieval. Our method learns to model the inherent correlation structure between visual representations using a binary semantic tree from training images which can be effectively transferred to new test images from unknown classes. Based on predicted correlation structure, we construct an efficient indexing scheme for the whole test image set. Unlike existing image index methods, our proposed LTI-ST method has the following two unique characteristics. First, it does not need to analyze the test images in the query database to construct the index structure. Instead, it is directly predicted by a network learnt from the training set. This zero-shot capability is critical for flexible, distributed, and scalable implementation and deployment of the image indexing and retrieval services at large scales. Second, unlike the existing distance-based index methods, our index structure is learnt using the LTI-ST deep neural network with binary encoding and decoding on a hierarchical semantic tree. Our extensive experimental results on benchmark datasets and ablation studies demonstrate that the proposed LTI-ST method outperforms existing index methods by a large margin while providing the above new capabilities which are highly desirable in practice.
URI: https://scidar.kg.ac.rs/handle/123456789/12624
Тип: article
DOI: 10.1109/TIP.2020.3036779
ISSN: 1057-7149
SCOPUS: 2-s2.0-85096889378
Налази се у колекцијама:Faculty of Technical Sciences, Čačak

Број прегледа

443

Број преузимања

10

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.