Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/12637
Назив: Management of higher heating value sensitivity of biomass by hybrid learning technique
Аутори: Lakovic N.
KHAN, AFRASYAB
Petkovic, Biljana
Petković D.
Kuzman, Boris
Resic S.
Jermsittiparsert, Kittisak
Azam S.
Датум издавања: 2021
Сажетак: © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature. Recently, biomass sources are important for energy applications. Therefore, there is need for analyzing the biomass model based on different components such as carbon, ash, and moisture content. Since the biomass modeling could be very challenging task for conventional mathematical, it is suitable to apply soft computing models which could overcome the nonlinearities of the process. The main attempt in the study was to develop a soft computing model for the prediction of the higher heating values of biomass based on the proximate analysis. Adaptive neuro-fuzzy inference system (ANFIS) was used as soft computing methodology. According to the prediction accuracy of the higher heating value of the biomass, the inputs’ influence was determined on the higher heating value. According to the obtained results, fixed carbon has a correlation coefficient of 0.7644, the volatile matter has a correlation coefficient of 0.7225, and ash has a correlation coefficient of 0.9317. Therefore, the ash percentage weight has the highest relevance on the higher heating value of the biomass. On the contrary, the volatile matter has the smallest relevance on the higher heating value of the biomass.
URI: https://scidar.kg.ac.rs/handle/123456789/12637
Тип: article
DOI: 10.1007/s13399-020-01223-w
ISSN: 2190-6815
SCOPUS: 2-s2.0-85098545514
Налази се у колекцијама:Faculty of Economics, Kragujevac

Број прегледа

506

Број преузимања

15

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.