Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/12667
Назив: Note on some representations of general solutions to homogeneous linear difference equations
Аутори: Stević S.
Iricanin, Bratislav
Kosmala W.
Smarda, Zdenek
Датум издавања: 2020
Сажетак: © 2020, The Author(s). It is known that every solution to the second-order difference equation xn= xn−1+ xn−2= 0 , n≥ 2 , can be written in the following form xn= xfn−1+ x1fn, where fn is the Fibonacci sequence. Here we find all the homogeneous linear difference equations with constant coefficients of any order whose general solution have a representation of a related form. We also present an interesting elementary procedure for finding a representation of general solution to any homogeneous linear difference equation with constant coefficients in terms of the coefficients of the equation, initial values, and an extension of the Fibonacci sequence. This is done for the case when all the roots of the characteristic polynomial associated with the equation are mutually different, and then it is shown that such obtained representation also holds in other cases. It is also shown that during application of the procedure the extension of the Fibonacci sequence appears naturally.
URI: https://scidar.kg.ac.rs/handle/123456789/12667
Тип: article
DOI: 10.1186/s13662-020-02944-y
ISSN: 1687-1839
SCOPUS: 2-s2.0-85091356448
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

499

Број преузимања

15

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
10.1186-s13662-020-02944-y.pdf1.35 MBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons