Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/12705
Назив: A comparison of classifiers in biomedical signal processing as a decision support system in disc hernia diagnosis
Аутори: Sustersic, Tijana
Milovanović, Vladimir
Rankovic, Vesna
Filipovic, Nenad
Датум издавања: 2020
Сажетак: © 2020 Elsevier Ltd The aim of this research was to investigate the best methodology for disc hernia diagnosis using foot force measurements from the designed platform. Based on the subjective neurological examination that examines muscle weakness on the nerve endings of the skin area on feet and concludes about origins of nerve roots between spine discs, a platform for objective recordings of the aforementioned muscle weakness has been designed. The dataset included 33 patients with pre-diagnosed L4/L5 and L5/S1 disc hernia on the left or the right side, confirmed with the MRI scanning and neurological exam. We have implemented 5 different classifiers that were found to be the most suitable for smaller dataset and investigated the accuracy of classification depending on the normalization method, linearity/non-linearity of the algorithm, and dataset splitting variation (32–1, 31–2, 30–3, 29-4 patients for training and testing, respectively). The classifier is able to distinguish between four different diagnoses L4/L5 on the left side, L4/L5 on the right side, L5/S1 on the left side and L5/S1 on the right side, as well as to recognize healthy subjects (without disc herniation). The results show that non-linear algorithms achieved better accuracy in comparison to tested linear classifiers, suggesting the expected non-linear connection between the foot force values and the level of disc herniation. Two algorithms with highest accuracy turned out to be Decision Tree and Naïve Bayes, depending on the normalization method. The system is also able to record and recognize improvements in muscle weakness after surgical operation and physical therapy.
URI: https://scidar.kg.ac.rs/handle/123456789/12705
Тип: article
DOI: 10.1016/j.compbiomed.2020.103978
ISSN: 0010-4825
SCOPUS: 2-s2.0-85089798865
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

560

Број преузимања

16

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.