Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/12796
Назив: | Micro/nanoscale structural, mechanical and tribological characterization of ZA-27/SiC nanocomposites |
Аутори: | Babic, Miroslav Stojanovic, Blaza Dzunic, Dragan Pantić, Marko |
Датум издавања: | 2020 |
Сажетак: | © The Author(s) 2019. The structural, mechanical and tribological properties of ZA-27/SiC nanocomposites were investigated at micro/nanoscale. The nanocomposites with different volume fractions of nano-sized SiC particles were produced using the compocasting technique. The microstructure of nanocomposites was characterized with formation of SiC nano agglomerates, which were relatively uniformly distributed. The increase in SiC content contributed to the uniformity of their distribution. Also, the phenomenon of particle segregation in the form of particle-rich clusters, as well as particle-porosity clusters, was identified. The density level of composites decreased with the increase of the SiC content. The porosity followed a reverse trend. The tendency for formation of local particle-porosity clusters was the highest in ZA-27/1% SiC nanocomposite, causing the highest level of porosity. Increasing percentage of SiC content was followed by the increase in micro/nanohardness of the composites. The results of micro/nanoscale tribotests revealed that the reinforcing with SiC nanoparticles significantly improved wear and friction behavior of ZA-27 matrix alloy. The rate of improvement increased with the increase of SiC nanoparticle content, load, and sliding speed. The highest degree of changes corresponded to the change of the SiC nanoparticle content from 0 to 1 wt%. The further decrease of wear with SiC content (from 1 to 5 wt%) was almost linear. The different tribological behavior of tested ZA-27 matrix and ZA-27/SiC nanocomposites was influenced by differences of intensity of adhesion resulted in transferred layers of matrix material onto worn surfaces of Al2O3 ball counterpart. The intensity of adhesion significantly decreased with the increase of SiC nanoparticle content. |
URI: | https://scidar.kg.ac.rs/handle/123456789/12796 |
Тип: | article |
DOI: | 10.1177/0021998319891766 |
ISSN: | 0021-9983 |
SCOPUS: | 2-s2.0-85077355149 |
Налази се у колекцијама: | Faculty of Engineering, Kragujevac |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
PaperMissing.pdf Ограничен приступ | 29.86 kB | Adobe PDF | Погледајте |
Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.