Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/12803
Назив: An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks
Аутори: Tao H.
Wang P.
Chen, Yiyang
Stojanović, Vladimir
Yang H.
Датум издавања: 2020
Сажетак: © 2020 The Franklin Institute In recent years, the technique of machine learning or deep learning has been employed in intelligent fault diagnosis methods to achieve much success using massive labeled data. However, it is generally difficult or expensive to label the monitoring data in practical engineering due to its complex working conditions. Therefore, an unsupervised fault diagnosis method is proposed in this paper for rolling bearings, which incorporates short-time Fourier transform (STFT) as well as categorical generative adversarial networks (CatGAN). The proposed method first adopts STFT to transform raw 1-D vibration signals into 2-D time-frequency maps to serve as the input of CatGAN. Then, it obtains a CatGAN model via an adversarial training process to generate fake samples with a similar distribution to the maps extracted by STFT and cluster the input samples into certain categories. Furthermore, the performance of the proposed ST-CatGAN method is verified using a classic rotating machinery dataset, and the experimental results demonstrate its high diagnosis accuracy and strong robustness against the motor load changes.
URI: https://scidar.kg.ac.rs/handle/123456789/12803
Тип: article
DOI: 10.1016/j.jfranklin.2020.04.024
ISSN: 0016-0032
SCOPUS: 2-s2.0-85085745239
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

507

Број преузимања

23

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.