Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/12821
Назив: | Gait Classification Using A Support Vector Machine Algorithm |
Аутори: | Petrovic Savic, Suzana Ristic, Branko Prodanovic, Nikola Devedzic, Goran |
Датум издавања: | 2020 |
Сажетак: | © 2020 IEEE. The gait pattern, as well as the walking process itself, can be an indicator of the overall health of patients. For this reason, it is very important to accurately, clearly and quickly determine the affiliation of the gait pattern (healthy or pathological) and take appropriate measures if necessary. As anterior cruciate ligament injuries are common and may be undetectable, this study presents a classification of gait using a support vector machine (SVM) algorithm. The test data were taken from a Gait LAB laboratory; anterior posterior translation and internal external rotation were used as significant parameters. The classifier performance was evaluated using a confusion matrix. These results showed that the SVM algorithm can be successfully used in tasks of this type of classification. |
URI: | https://scidar.kg.ac.rs/handle/123456789/12821 |
Тип: | conferenceObject |
DOI: | 10.1109/MECO49872.2020.9134075 |
SCOPUS: | 2-s2.0-85088531533 |
Налази се у колекцијама: | Faculty of Engineering, Kragujevac Faculty of Medical Sciences, Kragujevac |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
PaperMissing.pdf Ограничен приступ | 29.86 kB | Adobe PDF | Погледајте |
Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.