Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/12821
Назив: Gait Classification Using A Support Vector Machine Algorithm
Аутори: Petrovic Savic, Suzana
Ristic, Branko
Prodanovic, Nikola
Devedzic, Goran
Датум издавања: 2020
Сажетак: © 2020 IEEE. The gait pattern, as well as the walking process itself, can be an indicator of the overall health of patients. For this reason, it is very important to accurately, clearly and quickly determine the affiliation of the gait pattern (healthy or pathological) and take appropriate measures if necessary. As anterior cruciate ligament injuries are common and may be undetectable, this study presents a classification of gait using a support vector machine (SVM) algorithm. The test data were taken from a Gait LAB laboratory; anterior posterior translation and internal external rotation were used as significant parameters. The classifier performance was evaluated using a confusion matrix. These results showed that the SVM algorithm can be successfully used in tasks of this type of classification.
URI: https://scidar.kg.ac.rs/handle/123456789/12821
Тип: conferenceObject
DOI: 10.1109/MECO49872.2020.9134075
SCOPUS: 2-s2.0-85088531533
Налази се у колекцијама:Faculty of Engineering, Kragujevac
Faculty of Medical Sciences, Kragujevac

Број прегледа

796

Број преузимања

17

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.