Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/13467
Назив: | Online reinforcement learning multiplayer non-zero sum games of continuous-time Markov jump linear systems |
Аутори: | Xin X. Tu Y. Stojanović, Vladimir Wang H. Shi K. He Z. pan, sudip |
Датум издавања: | 2022 |
Сажетак: | In this paper, a novel online mode-free integral reinforcement learning algorithm is proposed to solve the multiplayer non-zero sum games. We first collect and learn the subsystems information of states and inputs; then we use the online learning to compute the corresponding N coupled algebraic Riccati equations. The policy iterative algorithm proposed in this paper can solve the coupled algebraic Riccati equations corresponding to the multiplayer non-zero sum games. Finally, the effectiveness and feasibility of the design method of this paper is proved by simulation example with three players. |
URI: | https://scidar.kg.ac.rs/handle/123456789/13467 |
Тип: | article |
DOI: | 10.1016/j.amc.2021.126537 |
ISSN: | 0096-3003 |
SCOPUS: | 2-s2.0-85112302552 |
Налази се у колекцијама: | Faculty of Mechanical and Civil Engineering, Kraljevo |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
PaperMissing.pdf Ограничен приступ | 29.86 kB | Adobe PDF | Погледајте |
Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.