Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/13548
Назив: Towards histopathological stain invariance by Unsupervised Domain Augmentation using generative adversarial networks
Аутори: Vasiljević, Jelica
Feuerhake F.
Wemmert, Cedric
Lampert, Thomas
Датум издавања: 2021
Сажетак: The application of supervised deep learning methods in digital pathology is limited due to their sensitivity to domain shift. Digital Pathology is an area prone to high variability due to many sources, including the common practice of evaluating several consecutive tissue sections stained with different staining protocols. Obtaining labels for each stain is very expensive and time consuming as it requires a high level of domain knowledge. In this article, we propose an unsupervised augmentation approach based on adversarial image-to-image translation, which facilitates the training of stain invariant supervised convolutional neural networks. By training the network on one commonly used staining modality and applying it to images that include corresponding, but differently stained, tissue structures, the presented method demonstrates significant improvements over other approaches. These benefits are illustrated in the problem of glomeruli segmentation in seven different staining modalities (PAS, Jones H&E, CD68, Sirius Red, CD34, H&E and CD3) and analysis of the learned representations demonstrate their stain invariance.
URI: https://scidar.kg.ac.rs/handle/123456789/13548
Тип: article
DOI: 10.1016/j.neucom.2021.07.005
ISSN: 0925-2312
SCOPUS: 2-s2.0-85111008525
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

439

Број преузимања

19

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
10.1016-j.neucom.2021.07.005.pdf21.57 MBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons