Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/13658
Назив: Anomaly Detection Model for Predicting Hard Disk Drive Failures
Аутори: Đurašević, Slađana
Pešović, Uroš
Djordjevic B.
Датум издавања: 2021
Сажетак: The electromechanical design of the HDD (Hard Disk Drive) renders it more susceptible to failures than other components of the computer system. The failure of HDD leads to permanent data loss, which is typically more expensive than HDD itself. The SMART (Self-Monitoring, Analysis and Reporting Technology) system warns the user if any HDD parameter has exceeded the predefined threshold value needed for safe HDD operation. Machine learning methods take advantage of dependence between multiple SMART parameters in order to make failure prediction more precise. In this paper, we present a failure prediction model based on the anomaly detection method involving an adjustable decision boundary. SMART parameters are ranked by the importance and the 13 most significant ones are used as the initial feature set in our model. In the following stage, we optimized the feature set by removing those that have no major contribution to the anomaly detection model, forming the final feature set comprising seven features only. The proposed anomaly detection model achieved 96.11% failure detection rate on average, with 0% false detection rate in ten random tests. The proposed model predicted more than 80% of failures 24 hours before their actual occurrence, which enables timely data backup.
URI: https://scidar.kg.ac.rs/handle/123456789/13658
Тип: article
DOI: 10.1080/08839514.2021.1922840
ISSN: 0883-9514
SCOPUS: 2-s2.0-85106182038
Налази се у колекцијама:Faculty of Technical Sciences, Čačak

Број прегледа

540

Број преузимања

20

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.