Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/13861
Назив: Value iteration and adaptive optimal output regulation with assured convergence rate
Аутори: Jiang, Yi
Gao, Weinan
Na, Jing
Zhang D.
Hamalainen T.
Stojanović, Vladimir
Lewis F.
Датум издавања: 2022
Сажетак: In this paper, we investigate the learning-based adaptive optimal output regulation problem with convergence rate requirement for disturbed linear continuous-time systems. An adaptive optimal control approach is proposed based on reinforcement learning and adaptive dynamic programming to learn the optimal regulator with assured convergence rate. The above-mentioned problem is successfully solved by tackling a static optimization problem to find the optimal solution to the regulator equations, and a dynamic and constrained optimization problem to obtain the optimal feedback control gain. Without requiring on the accurate system dynamics or a stabilizing feedback control gain, a novel online value iteration algorithm is proposed, which can learn both the optimal feedback control gain and the corresponding feedforward control gain using measurable data. Moreover, the output of the closed-loop system is guaranteed to converge faster or equal to a predefined convergence rate set by user. Finally, the numerical analysis on a LCL coupled inverter-based distributed generation system shows that the proposed approach can achieve desired disturbance rejection and tracking performance.
URI: https://scidar.kg.ac.rs/handle/123456789/13861
Тип: article
DOI: 10.1016/j.conengprac.2021.105042
ISSN: 0967-0661
SCOPUS: 2-s2.0-85122514669
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

433

Број преузимања

10

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.