Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/14019
Назив: Improved personalised neuroendocrine tumours’ diagnosis predictive power by new receptor somatostatin image processing quantification
Аутори: Stolniceanu C.
Moscalu, Mihaela
Azoicai D.
Tamba, Bogdan Ionel
Volovăț C.
Grierosu I.
Ionescu T.
Jalloul W.
Ghizdovəţ V.
Gherasim R.
Volovǎţ S.
Wang F.
Fu J.
Moscalu R.
Matovic, Milovan
Stefănescu C.
Датум издавања: 2021
Сажетак: Although neuroendocrine tumours (NETs) are intensively studied, their diagnosis and consequently personalised therapy management is still puzzling due to their tumoral heterogeneity. In their theragnosis algorithm, receptor somatostatin scintigraphy takes the central place, the diagnosis receptor somatostatin analogue (RSA) choice depending on laboratory experience and accessibility. However, in all cases, the results depend decisively on correct radiotracer tumoral uptake quantification, where unfortunately there are still unrevealed clues and lack of standardization. We propose an improved method to quantify the biodistribution of gamma-emitting RSA, using tissular corrected uptake indices. We conducted a bi-centric retrospective study on 101 patients with different types of NETs. Three uptake indices obtained after applying new corrections to areas of interest drawn for the tumour and for three reference organs (liver, spleen and lung) were statistically analysed. For the corrected pathological uptake indices, the results showed a significant decrease in the error of estimating the occurrence of errors and an increase in the diagnostic predictive power for NETs, especially in the case of lung-referring corrected index. In conclusion, these results support the importance of corrected uptake indices use in the analysis of99m TcRSA biodistribution for a better personalised diagnostic accuracy of NETs patients.
URI: https://scidar.kg.ac.rs/handle/123456789/14019
Тип: article
DOI: 10.3390/jpm11101042
SCOPUS: 2-s2.0-85118197396
Налази се у колекцијама:Faculty of Medical Sciences, Kragujevac

Број прегледа

429

Број преузимања

22

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
10.3390-jpm11101042.pdf1.84 MBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons