Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/14061
Назив: Improved predictive performance of prostate biopsy collaborative group risk calculator when based on automated machine learning
Аутори: Stojadinovic, Miroslav
Milicevic B.
Jankovic, Slobodan
Датум издавања: 2021
Сажетак: Background: The Prostate Biopsy Collaborative Group risk calculator (PBCG RC) has a moderate discriminatory capability. This study aimed to create automated machine learning (AutoML) PBCG RC for predicting the probability of any-grade and high-grade prostate cancer (PCa). Methods: This retrospective, single-center study was carried out using the database with 832 patients who were subject to transrectal ultrasound-guided prostate biopsy with prostate-specific antigen (PSA) values from 2 to 50 ng/ml. Information about PBCG RC predictors was gathered for all patients. We used H2O, as an open-source platform for AutoML, where the set of 20 base learning algorithms were trained. The AutoML PBCG RC was compared in terms of discrimination, calibration, and clinical utility with the original PBCG RC. Results: PCa was detected in 341 (41%) men, and 159 (19.1%) of them had high-grade PCa. Our AutoML models demonstrated better discriminative ability than the original PBCG RC for detection of PCa (area under the curve [AUC]: 0.703 vs 0.628; P = 0.023) and high-grade PCa (AUC: 0.990 vs 0.717; P < 0.001). The decision curve analyses showed that AutoML models performed better. For high-grade PCa the PSA was the most important feature. Conclusions: We applied ensemble techniques to create a freely available online PCa risk tool based on PBCG RC predictors and AutoML algorithms. The AutoML models drastically improved original model performance and the predictions of high-grade PCa were nearly perfect. However, new models should be used with a reserve, because external validation has not been performed yet.
URI: https://scidar.kg.ac.rs/handle/123456789/14061
Тип: article
DOI: 10.1016/j.compbiomed.2021.104903
ISSN: 0010-4825
SCOPUS: 2-s2.0-85115887158
Налази се у колекцијама:Faculty of Medical Sciences, Kragujevac

Број прегледа

426

Број преузимања

9

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.