Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/14894
Назив: Control theory-based data assimilation for open channel hydraulic models: tuning PID controllers using multi-objective optimization
Аутори: Milasinovic M.
Prodanovic, Dusan
Stanić, Marija
Zindovic, Budo
Stojanović, Boban
Milivojevic N.
Датум издавања: 2022
Сажетак: Reliable water resources management requires decision support tools to successfully forecast hydraulic data (stage and flow hydrographs). Even though data-driven methods are nowadays trendy to apply, they still fail to provide reliable forecasts during extreme periods due to a lack of training data. Therefore, model-driven forecasting is still needed. However, the model-driven forecasting approach is affected by numerous uncertainties in initial and boundary conditions. To improve the real-time model’s operation, it can be regularly updated using measured data in the data assimilation (DA) procedure. Widely used DA techniques are computationally expensive, which reduce their real-time applications. Previous research shows that tailor-made, time-efficient DA methods based on the control theory could be used instead. This paper presents further insights into the control theory-based DA for 1D hydraulic models. This method uses Proportional–Integrative–Derivative (PID) controllers to assimilate computed water levels and observed data. This paper describes the two-stage PID controllers’ tuning procedure. Multi-objective optimization by Nondominated Sorting Genetic Algorithm II (NSGA-II) was used to determine optimal parameters for PID controllers. The proposed tuning procedure is tested on a hydraulic model used as a decision support tool for the transboundary Iron Gate 1 hydropower system on the Danube River, showing that the average discrepancy between modeled and observed water levels can be less than 0.05 m for more than 97% of assimilation window.
URI: https://scidar.kg.ac.rs/handle/123456789/14894
Тип: article
DOI: 10.2166/hydro.2022.034
ISSN: 1464-7141
SCOPUS: 2-s2.0-85136207571
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

410

Број преузимања

8

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.85 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.