Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/15621
Title: New gold(III) chlorophenyl terpyridine complex: Biomolecular interactions and anticancer activity against human oral squamous cell carcinoma
Authors: Radisavljević, Snežana
Kesić, Ana
Ćoćić, Dušan
Grbovic-Markovic V.
Milovanovic, Jelena
Petrović, Biljana
Simović A.
Issue Date: 2023
Abstract: In this work we synthesized new monofunctional gold(III) complex [Au(Cl-Ph-tpy)Cl]Cl2 (Cl-Ph-tpy = 4′-[4-chlorophenyl]-2,2′:6′, 2″-terpyridine). This complex was characterized by UV–Vis, NMR, IR, and ESI-MS spectrometry. The kinetic study of the substitution reactions of the Au-Cl-Ph-tpy complex with biomolecules showed that the rate constants depend on the nature of the entering nucleophile. Based on the calculated values of entropy (∆H≠ > 0) and enthalpy (∆S≠ < 0) the proposed substitution mechanism is associative. Additionally, the relative stability and thermodynamic properties of Au-Cl-Ph-tpy complex were compared with the analogue Au-tpy complex by the B3LYP/def2-svp method. DNA/BSA binding studies showed that Au-Cl-Ph-tpy complex interacts with CT DNA through the intercalation and moderately quenches the fluorescence of tryptophan residues in serum albumin (BSA). Molecular docking confirmed results obtained by spectroscopic experiments and suggested site I (subdomain IIA) for binding of Au complex to BSA. We demonstrated that the Au chlorophenyl terpyridine complex possessed significant in vitro cytotoxic activity against human oral squamous carcinoma cells (CAL-27), induced apoptosis, inhibited proliferation of CAL-27 cells, and induced cell cycle disturbance. Treatment of CAL-27 cells with the Au complex enhanced expression of cyclin-dependent kinase inhibitors p21 and p27, resulting in cell cycle arrest in the G1 phase, reduced the percentage of CAL-27 cells in S phase and decreased expression of Ki-67. Additionally, Au complex reduced expression of phosphorylated STAT3 and downstream regulated molecules associated with cancer stemness, NANOG, and Sox2 protein.
URI: https://scidar.kg.ac.rs/handle/123456789/15621
Type: article
DOI: 10.1002/aoc.6922
ISSN: 0268-2605
SCOPUS: 2-s2.0-85140399379
Appears in Collections:Faculty of Medical Sciences, Kragujevac
Faculty of Science, Kragujevac

Page views(s)

716

Downloads(s)

5

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.